Files
libpostal/src/logistic_regression_trainer.c

307 lines
11 KiB
C

#include "logistic_regression_trainer.h"
#include "sparse_matrix_utils.h"
#define INITIAL_FEATURE_BATCH_SIZE 1024
void logistic_regression_trainer_destroy(logistic_regression_trainer_t *self) {
if (self == NULL) return;
if (self->feature_ids != NULL) {
trie_destroy(self->feature_ids);
}
if (self->label_ids != NULL) {
kh_destroy(str_uint32, self->label_ids);
}
if (self->unique_columns != NULL) {
kh_destroy(int_uint32, self->unique_columns);
}
if (self->batch_columns != NULL) {
uint32_array_destroy(self->batch_columns);
}
if (self->batch_weights != NULL) {
double_matrix_destroy(self->batch_weights);
}
if (self->gradient != NULL) {
double_matrix_destroy(self->gradient);
}
free(self);
}
static logistic_regression_trainer_t *logistic_regression_trainer_init(trie_t *feature_ids, khash_t(str_uint32) *label_ids) {
if (feature_ids == NULL || label_ids == NULL) return NULL;
logistic_regression_trainer_t *trainer = malloc(sizeof(logistic_regression_trainer_t));
if (trainer == NULL) return NULL;
trainer->feature_ids = feature_ids;
// Add one feature for the bias unit
trainer->num_features = trie_num_keys(feature_ids) + 1;
trainer->label_ids = label_ids;
trainer->num_labels = kh_size(label_ids);
trainer->gradient = double_matrix_new_zeros(INITIAL_FEATURE_BATCH_SIZE, trainer->num_labels);
if (trainer->gradient == NULL) {
goto exit_trainer_created;
}
trainer->unique_columns = kh_init(int_uint32);
if (trainer->unique_columns == NULL) {
goto exit_trainer_created;
}
trainer->batch_columns = uint32_array_new_size(INITIAL_FEATURE_BATCH_SIZE);
if (trainer->batch_columns == NULL) {
goto exit_trainer_created;
}
trainer->batch_weights = double_matrix_new_zeros(INITIAL_FEATURE_BATCH_SIZE, trainer->num_labels);
if (trainer->batch_weights == NULL) {
goto exit_trainer_created;
}
trainer->epochs = 0;
return trainer;
exit_trainer_created:
logistic_regression_trainer_destroy(trainer);
return NULL;
}
logistic_regression_trainer_t *logistic_regression_trainer_init_sgd(trie_t *feature_ids, khash_t(str_uint32) *label_ids, bool fit_intercept, regularization_type_t reg_type, double lambda, double gamma_0) {
logistic_regression_trainer_t *trainer = logistic_regression_trainer_init(feature_ids, label_ids);
if (trainer == NULL) {
return NULL;
}
trainer->optimizer_type = LOGISTIC_REGRESSION_OPTIMIZER_SGD;
trainer->optimizer.sgd = sgd_trainer_new(trainer->num_features, trainer->num_labels, fit_intercept, reg_type, lambda, gamma_0);
if (trainer->optimizer.sgd == NULL) {
logistic_regression_trainer_destroy(trainer);
return NULL;
}
return trainer;
}
logistic_regression_trainer_t *logistic_regression_trainer_init_ftrl(trie_t *feature_ids, khash_t(str_uint32) *label_ids, double lambda1, double lambda2, double alpha, double beta) {
logistic_regression_trainer_t *trainer = logistic_regression_trainer_init(feature_ids, label_ids);
if (trainer == NULL) {
return NULL;
}
trainer->optimizer_type = LOGISTIC_REGRESSION_OPTIMIZER_FTRL;
bool fit_intercept = true;
log_info("num_features = %zu\n", trainer->num_features);
trainer->optimizer.ftrl = ftrl_trainer_new(trainer->num_features, trainer->num_labels, fit_intercept, alpha, beta, lambda1, lambda2);
if (trainer->optimizer.sgd == NULL) {
logistic_regression_trainer_destroy(trainer);
return NULL;
}
return trainer;
}
bool logistic_regression_trainer_reset_params_sgd(logistic_regression_trainer_t *self, double lambda, double gamma_0) {
if (self == NULL || self->optimizer_type != LOGISTIC_REGRESSION_OPTIMIZER_SGD || self->optimizer.sgd == NULL) return false;
sgd_trainer_t *sgd_trainer = self->optimizer.sgd;
return sgd_trainer_reset_params(sgd_trainer, lambda, gamma_0);
}
bool logistic_regression_trainer_reset_params_ftrl(logistic_regression_trainer_t *self, double alpha, double beta, double lambda1, double lambda2) {
if (self == NULL || self->optimizer_type != LOGISTIC_REGRESSION_OPTIMIZER_FTRL || self->optimizer.ftrl == NULL) return false;
ftrl_trainer_t *ftrl_trainer = self->optimizer.ftrl;
return ftrl_trainer_reset_params(ftrl_trainer, alpha, beta, lambda1, lambda2);
}
double logistic_regression_trainer_minibatch_cost(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
size_t n = self->num_labels;
sparse_matrix_t *x = feature_matrix(self->feature_ids, features);
uint32_array *y = label_vector(self->label_ids, labels);
double_matrix_t *p_y = double_matrix_new_aligned(x->m, n, 16);
double_matrix_zero(p_y);
double cost;
if (!sparse_matrix_add_unique_columns_alias(x, self->unique_columns, self->batch_columns)) {
cost = -1.0;
goto exit_cost_matrices_created;
}
double_matrix_t *weights = logistic_regression_trainer_get_weights(self);
cost = logistic_regression_cost_function(weights, x, y, p_y);
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
sgd_trainer_t *sgd_trainer = self->optimizer.sgd;
double reg_cost = stochastic_gradient_descent_reg_cost(sgd_trainer, self->batch_columns, x->m);
cost += reg_cost;
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
ftrl_trainer_t *ftrl_trainer = self->optimizer.ftrl;
double reg_cost = ftrl_reg_cost(ftrl_trainer, weights, self->batch_columns, x->m);
cost += reg_cost;
}
exit_cost_matrices_created:
double_matrix_destroy(p_y);
uint32_array_destroy(y);
sparse_matrix_destroy(x);
return cost;
}
bool logistic_regression_trainer_train_minibatch(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
double_matrix_t *gradient = self->gradient;
sparse_matrix_t *x = feature_matrix(self->feature_ids, features);
if (x == NULL) {
log_error("x == NULL\n");
return false;
}
uint32_array *y = label_vector(self->label_ids, labels);
if (y == NULL) {
log_error("y == NULL\n");
return false;
}
bool ret = false;
if (!sparse_matrix_add_unique_columns_alias(x, self->unique_columns, self->batch_columns)) {
log_error("Unique columns failed\n");
return false;
}
if(!double_matrix_resize(gradient, self->batch_columns->n, self->num_labels)) {
log_error("Gradient resize failed\n");
return false;
}
double_matrix_t *weights = logistic_regression_trainer_get_weights(self);
if (weights == NULL) {
log_error("Error getting weights\n");
return false;
}
size_t batch_size = x->m;
double_matrix_t *p_y = double_matrix_new_aligned(batch_size, self->num_labels, 16);
if (p_y == NULL) {
log_error("Error allocating p_y\n");
return false;
}
if (!logistic_regression_gradient(weights, gradient, x, y, p_y)) {
log_error("Gradient failed\n");
goto exit_matrices_created;
}
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
ret = stochastic_gradient_descent_update_sparse(self->optimizer.sgd, gradient, self->batch_columns, batch_size);
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
ret = ftrl_update_gradient(self->optimizer.ftrl, gradient, weights, self->batch_columns, batch_size);
if (!ret) {
log_error("ftrl_update_gradient failed\n");
}
} else {
ret = false;
}
exit_matrices_created:
double_matrix_destroy(p_y);
uint32_array_destroy(y);
sparse_matrix_destroy(x);
return ret;
}
double_matrix_t *logistic_regression_trainer_get_weights(logistic_regression_trainer_t *self) {
if (self == NULL) return NULL;
size_t m = self->batch_columns->n;
size_t n = self->num_labels;
double_matrix_t *batch_weights = self->batch_weights;
if (batch_weights == NULL || !double_matrix_resize(batch_weights, m, n)) {
return NULL;
}
double_matrix_zero(batch_weights);
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
if (self->optimizer.sgd == NULL) return NULL;
double_matrix_t *full_weights = self->optimizer.sgd->theta;
uint32_t *columns = self->batch_columns->a;
for (size_t i = 0; i < m; i++) {
uint32_t col = columns[i];
double *theta_row = double_matrix_get_row(full_weights, col);
double *row = double_matrix_get_row(batch_weights, i);
for (size_t j = 0; j < n; j++) {
row[j] = theta_row[j];
}
}
return batch_weights;
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
if (self->optimizer.ftrl == NULL) return NULL;
if (!ftrl_set_weights(self->optimizer.ftrl, batch_weights, self->batch_columns)) {
return NULL;
}
return batch_weights;
}
return NULL;
}
double_matrix_t *logistic_regression_trainer_get_regularized_weights(logistic_regression_trainer_t *self) {
if (self == NULL) return NULL;
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
if (self->optimizer.sgd == NULL) return NULL;
return stochastic_gradient_descent_get_weights(self->optimizer.sgd);
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
if (self->optimizer.ftrl == NULL) return NULL;
if (!ftrl_set_weights(self->optimizer.ftrl, self->batch_weights, NULL)) {
return NULL;
}
return self->batch_weights;
}
return NULL;
}
double_matrix_t *logistic_regression_trainer_final_weights(logistic_regression_trainer_t *self) {
if (self == NULL) return NULL;
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
if (self->optimizer.sgd == NULL) return NULL;
double_matrix_t *weights = stochastic_gradient_descent_get_weights(self->optimizer.sgd);
self->optimizer.sgd->theta = NULL;
return weights;
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
if (self->optimizer.ftrl == NULL) return NULL;
return ftrl_weights_finalize(self->optimizer.ftrl);
}
return NULL;
}
sparse_matrix_t *logistic_regression_trainer_final_weights_sparse(logistic_regression_trainer_t *self) {
if (self == NULL) return NULL;
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
if (self->optimizer.sgd == NULL) return NULL;
return stochastic_gradient_descent_get_weights_sparse(self->optimizer.sgd);
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
if (self->optimizer.ftrl == NULL) return NULL;
return ftrl_weights_finalize_sparse(self->optimizer.ftrl);
}
return NULL;
}