[classification] flexible logistic regression trainer that can handle either SGD (with either L1 or L2) or FTRL as optimiers
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
#include "logistic_regression_trainer.h"
|
||||
#include "sparse_matrix_utils.h"
|
||||
|
||||
#define INITIAL_FEATURE_BATCH_SIZE 1024
|
||||
|
||||
void logistic_regression_trainer_destroy(logistic_regression_trainer_t *self) {
|
||||
if (self == NULL) return;
|
||||
|
||||
@@ -12,22 +14,18 @@ void logistic_regression_trainer_destroy(logistic_regression_trainer_t *self) {
|
||||
kh_destroy(str_uint32, self->label_ids);
|
||||
}
|
||||
|
||||
if (self->weights != NULL) {
|
||||
double_matrix_destroy(self->weights);
|
||||
}
|
||||
|
||||
if (self->last_updated != NULL) {
|
||||
uint32_array_destroy(self->last_updated);
|
||||
}
|
||||
|
||||
if (self->unique_columns != NULL) {
|
||||
kh_destroy(int_set, self->unique_columns);
|
||||
kh_destroy(int_uint32, self->unique_columns);
|
||||
}
|
||||
|
||||
if (self->batch_columns != NULL) {
|
||||
uint32_array_destroy(self->batch_columns);
|
||||
}
|
||||
|
||||
if (self->batch_weights != NULL) {
|
||||
double_matrix_destroy(self->batch_weights);
|
||||
}
|
||||
|
||||
if (self->gradient != NULL) {
|
||||
double_matrix_destroy(self->gradient);
|
||||
}
|
||||
@@ -35,7 +33,7 @@ void logistic_regression_trainer_destroy(logistic_regression_trainer_t *self) {
|
||||
free(self);
|
||||
}
|
||||
|
||||
logistic_regression_trainer_t *logistic_regression_trainer_init(trie_t *feature_ids, khash_t(str_uint32) *label_ids, double gamma_0, double lambda) {
|
||||
static logistic_regression_trainer_t *logistic_regression_trainer_init(trie_t *feature_ids, khash_t(str_uint32) *label_ids) {
|
||||
if (feature_ids == NULL || label_ids == NULL) return NULL;
|
||||
|
||||
logistic_regression_trainer_t *trainer = malloc(sizeof(logistic_regression_trainer_t));
|
||||
@@ -48,19 +46,26 @@ logistic_regression_trainer_t *logistic_regression_trainer_init(trie_t *feature_
|
||||
trainer->label_ids = label_ids;
|
||||
trainer->num_labels = kh_size(label_ids);
|
||||
|
||||
trainer->weights = double_matrix_new_zeros(trainer->num_features, trainer->num_labels);
|
||||
trainer->gradient = double_matrix_new_zeros(INITIAL_FEATURE_BATCH_SIZE, trainer->num_labels);
|
||||
if (trainer->gradient == NULL) {
|
||||
goto exit_trainer_created;
|
||||
}
|
||||
|
||||
trainer->gradient = double_matrix_new_zeros(trainer->num_features, trainer->num_labels);
|
||||
trainer->unique_columns = kh_init(int_uint32);
|
||||
if (trainer->unique_columns == NULL) {
|
||||
goto exit_trainer_created;
|
||||
}
|
||||
trainer->batch_columns = uint32_array_new_size(INITIAL_FEATURE_BATCH_SIZE);
|
||||
if (trainer->batch_columns == NULL) {
|
||||
goto exit_trainer_created;
|
||||
}
|
||||
|
||||
trainer->unique_columns = kh_init(int_set);
|
||||
trainer->batch_columns = uint32_array_new_size(trainer->num_features);
|
||||
trainer->batch_weights = double_matrix_new_zeros(INITIAL_FEATURE_BATCH_SIZE, trainer->num_labels);
|
||||
if (trainer->batch_weights == NULL) {
|
||||
goto exit_trainer_created;
|
||||
}
|
||||
|
||||
trainer->last_updated = uint32_array_new_zeros(trainer->num_features);
|
||||
|
||||
trainer->lambda = lambda;
|
||||
trainer->iters = 0;
|
||||
trainer->epochs = 0;
|
||||
trainer->gamma_0 = gamma_0;
|
||||
|
||||
return trainer;
|
||||
|
||||
@@ -69,70 +74,144 @@ exit_trainer_created:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
static double_matrix_t *model_expectation(sparse_matrix_t *x, double_matrix_t *theta) {
|
||||
double_matrix_t *p_y = double_matrix_new_zeros(x->m, theta->n);
|
||||
if (p_y == NULL) return NULL;
|
||||
|
||||
if(logistic_regression_model_expectation(theta, x, p_y)) {
|
||||
return p_y;
|
||||
} else {
|
||||
double_matrix_destroy(p_y);
|
||||
logistic_regression_trainer_t *logistic_regression_trainer_init_sgd(trie_t *feature_ids, khash_t(str_uint32) *label_ids, bool fit_intercept, regularization_type_t reg_type, double lambda, double gamma_0) {
|
||||
logistic_regression_trainer_t *trainer = logistic_regression_trainer_init(feature_ids, label_ids);
|
||||
if (trainer == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
trainer->optimizer_type = LOGISTIC_REGRESSION_OPTIMIZER_SGD;
|
||||
trainer->optimizer.sgd = sgd_trainer_new(trainer->num_features, trainer->num_labels, fit_intercept, reg_type, lambda, gamma_0);
|
||||
if (trainer->optimizer.sgd == NULL) {
|
||||
logistic_regression_trainer_destroy(trainer);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return trainer;
|
||||
}
|
||||
|
||||
double logistic_regression_trainer_batch_cost(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
|
||||
size_t m = self->weights->m;
|
||||
size_t n = self->weights->n;
|
||||
logistic_regression_trainer_t *logistic_regression_trainer_init_ftrl(trie_t *feature_ids, khash_t(str_uint32) *label_ids, double lambda1, double lambda2, double alpha, double beta) {
|
||||
logistic_regression_trainer_t *trainer = logistic_regression_trainer_init(feature_ids, label_ids);
|
||||
if (trainer == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
trainer->optimizer_type = LOGISTIC_REGRESSION_OPTIMIZER_FTRL;
|
||||
bool fit_intercept = true;
|
||||
log_info("num_features = %zu\n", trainer->num_features);
|
||||
trainer->optimizer.ftrl = ftrl_trainer_new(trainer->num_features, trainer->num_labels, fit_intercept, alpha, beta, lambda1, lambda2);
|
||||
if (trainer->optimizer.sgd == NULL) {
|
||||
logistic_regression_trainer_destroy(trainer);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return trainer;
|
||||
}
|
||||
|
||||
bool logistic_regression_trainer_reset_params_sgd(logistic_regression_trainer_t *self, double lambda, double gamma_0) {
|
||||
if (self == NULL || self->optimizer_type != LOGISTIC_REGRESSION_OPTIMIZER_SGD || self->optimizer.sgd == NULL) return false;
|
||||
|
||||
sgd_trainer_t *sgd_trainer = self->optimizer.sgd;
|
||||
return sgd_trainer_reset_params(sgd_trainer, lambda, gamma_0);
|
||||
}
|
||||
|
||||
bool logistic_regression_trainer_reset_params_ftrl(logistic_regression_trainer_t *self, double alpha, double beta, double lambda1, double lambda2) {
|
||||
if (self == NULL || self->optimizer_type != LOGISTIC_REGRESSION_OPTIMIZER_FTRL || self->optimizer.ftrl == NULL) return false;
|
||||
|
||||
ftrl_trainer_t *ftrl_trainer = self->optimizer.ftrl;
|
||||
return ftrl_trainer_reset_params(ftrl_trainer, alpha, beta, lambda1, lambda2);
|
||||
}
|
||||
|
||||
double logistic_regression_trainer_minibatch_cost(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
|
||||
size_t n = self->num_labels;
|
||||
|
||||
sparse_matrix_t *x = feature_matrix(self->feature_ids, features);
|
||||
uint32_array *y = label_vector(self->label_ids, labels);
|
||||
double_matrix_t *p_y = double_matrix_new_zeros(x->m, n);
|
||||
double_matrix_t *p_y = double_matrix_new_aligned(x->m, n, 16);
|
||||
double_matrix_zero(p_y);
|
||||
|
||||
double cost = logistic_regression_cost_function(self->weights, x, y, p_y, self->lambda);
|
||||
double cost;
|
||||
|
||||
if (!sparse_matrix_add_unique_columns_alias(x, self->unique_columns, self->batch_columns)) {
|
||||
cost = -1.0;
|
||||
goto exit_cost_matrices_created;
|
||||
}
|
||||
|
||||
double_matrix_t *weights = logistic_regression_trainer_get_weights(self);
|
||||
|
||||
cost = logistic_regression_cost_function(weights, x, y, p_y);
|
||||
|
||||
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
|
||||
sgd_trainer_t *sgd_trainer = self->optimizer.sgd;
|
||||
double reg_cost = stochastic_gradient_descent_reg_cost(sgd_trainer, self->batch_columns, x->m);
|
||||
cost += reg_cost;
|
||||
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
|
||||
ftrl_trainer_t *ftrl_trainer = self->optimizer.ftrl;
|
||||
double reg_cost = ftrl_reg_cost(ftrl_trainer, weights, self->batch_columns, x->m);
|
||||
cost += reg_cost;
|
||||
}
|
||||
|
||||
exit_cost_matrices_created:
|
||||
double_matrix_destroy(p_y);
|
||||
uint32_array_destroy(y);
|
||||
sparse_matrix_destroy(x);
|
||||
return cost;
|
||||
}
|
||||
|
||||
bool logistic_regression_trainer_train_batch(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
|
||||
size_t m = self->weights->m;
|
||||
size_t n = self->weights->n;
|
||||
|
||||
// Optimize
|
||||
bool logistic_regression_trainer_train_minibatch(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
|
||||
double_matrix_t *gradient = self->gradient;
|
||||
|
||||
sparse_matrix_t *x = feature_matrix(self->feature_ids, features);
|
||||
if (x == NULL) {
|
||||
log_error("x == NULL\n");
|
||||
return false;
|
||||
}
|
||||
uint32_array *y = label_vector(self->label_ids, labels);
|
||||
|
||||
double_matrix_t *p_y = double_matrix_new_zeros(x->m, n);
|
||||
if (y == NULL) {
|
||||
log_error("y == NULL\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ret = false;
|
||||
|
||||
if (!sparse_matrix_add_unique_columns(x, self->unique_columns, self->batch_columns)) {
|
||||
if (!sparse_matrix_add_unique_columns_alias(x, self->unique_columns, self->batch_columns)) {
|
||||
log_error("Unique columns failed\n");
|
||||
goto exit_matrices_created;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (self->lambda > 0.0 && !stochastic_gradient_descent_regularize_weights(self->weights, self->batch_columns, self->last_updated, self->iters, self->lambda, self->gamma_0)) {
|
||||
log_error("Error regularizing weights\n");
|
||||
goto exit_matrices_created;
|
||||
if(!double_matrix_resize(gradient, self->batch_columns->n, self->num_labels)) {
|
||||
log_error("Gradient resize failed\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!logistic_regression_gradient_sparse(self->weights, gradient, x, y, p_y, self->batch_columns, self->lambda)) {
|
||||
double_matrix_t *weights = logistic_regression_trainer_get_weights(self);
|
||||
if (weights == NULL) {
|
||||
log_error("Error getting weights\n");
|
||||
return false;
|
||||
}
|
||||
size_t batch_size = x->m;
|
||||
|
||||
double_matrix_t *p_y = double_matrix_new_aligned(batch_size, self->num_labels, 16);
|
||||
if (p_y == NULL) {
|
||||
log_error("Error allocating p_y\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!logistic_regression_gradient(weights, gradient, x, y, p_y)) {
|
||||
log_error("Gradient failed\n");
|
||||
goto exit_matrices_created;
|
||||
}
|
||||
|
||||
size_t data_len = m * n;
|
||||
|
||||
double gamma = stochastic_gradient_descent_gamma_t(self->gamma_0, self->lambda, self->iters);
|
||||
ret = stochastic_gradient_descent_sparse(self->weights, gradient, self->batch_columns, gamma);
|
||||
|
||||
self->iters++;
|
||||
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
|
||||
ret = stochastic_gradient_descent_update_sparse(self->optimizer.sgd, gradient, self->batch_columns, batch_size);
|
||||
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
|
||||
ret = ftrl_update_gradient(self->optimizer.ftrl, gradient, weights, self->batch_columns, batch_size);
|
||||
if (!ret) {
|
||||
log_error("ftrl_update_gradient failed\n");
|
||||
}
|
||||
} else {
|
||||
ret = false;
|
||||
}
|
||||
|
||||
exit_matrices_created:
|
||||
double_matrix_destroy(p_y);
|
||||
@@ -141,12 +220,87 @@ exit_matrices_created:
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool logistic_regression_trainer_finalize(logistic_regression_trainer_t *self) {
|
||||
if (self == NULL) return false;
|
||||
double_matrix_t *logistic_regression_trainer_get_weights(logistic_regression_trainer_t *self) {
|
||||
if (self == NULL) return NULL;
|
||||
|
||||
if (self->lambda > 0.0) {
|
||||
return stochastic_gradient_descent_finalize_weights(self->weights, self->last_updated, self->iters, self->lambda, self->gamma_0);
|
||||
size_t m = self->batch_columns->n;
|
||||
size_t n = self->num_labels;
|
||||
double_matrix_t *batch_weights = self->batch_weights;
|
||||
if (batch_weights == NULL || !double_matrix_resize(batch_weights, m, n)) {
|
||||
return NULL;
|
||||
}
|
||||
double_matrix_zero(batch_weights);
|
||||
|
||||
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
|
||||
if (self->optimizer.sgd == NULL) return NULL;
|
||||
double_matrix_t *full_weights = self->optimizer.sgd->theta;
|
||||
uint32_t *columns = self->batch_columns->a;
|
||||
|
||||
for (size_t i = 0; i < m; i++) {
|
||||
uint32_t col = columns[i];
|
||||
double *theta_row = double_matrix_get_row(full_weights, col);
|
||||
double *row = double_matrix_get_row(batch_weights, i);
|
||||
for (size_t j = 0; j < n; j++) {
|
||||
row[j] = theta_row[j];
|
||||
}
|
||||
}
|
||||
|
||||
return batch_weights;
|
||||
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
|
||||
if (self->optimizer.ftrl == NULL) return NULL;
|
||||
|
||||
if (!ftrl_set_weights(self->optimizer.ftrl, batch_weights, self->batch_columns)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return batch_weights;
|
||||
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
double_matrix_t *logistic_regression_trainer_get_regularized_weights(logistic_regression_trainer_t *self) {
|
||||
if (self == NULL) return NULL;
|
||||
|
||||
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
|
||||
if (self->optimizer.sgd == NULL) return NULL;
|
||||
return stochastic_gradient_descent_get_weights(self->optimizer.sgd);
|
||||
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
|
||||
if (self->optimizer.ftrl == NULL) return NULL;
|
||||
if (!ftrl_set_weights(self->optimizer.ftrl, self->batch_weights, NULL)) {
|
||||
return NULL;
|
||||
}
|
||||
return self->batch_weights;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
double_matrix_t *logistic_regression_trainer_final_weights(logistic_regression_trainer_t *self) {
|
||||
if (self == NULL) return NULL;
|
||||
|
||||
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
|
||||
if (self->optimizer.sgd == NULL) return NULL;
|
||||
double_matrix_t *weights = stochastic_gradient_descent_get_weights(self->optimizer.sgd);
|
||||
self->optimizer.sgd->theta = NULL;
|
||||
return weights;
|
||||
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
|
||||
if (self->optimizer.ftrl == NULL) return NULL;
|
||||
return ftrl_weights_finalize(self->optimizer.ftrl);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
sparse_matrix_t *logistic_regression_trainer_final_weights_sparse(logistic_regression_trainer_t *self) {
|
||||
if (self == NULL) return NULL;
|
||||
|
||||
if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
|
||||
if (self->optimizer.sgd == NULL) return NULL;
|
||||
return stochastic_gradient_descent_get_weights_sparse(self->optimizer.sgd);
|
||||
} else if (self->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
|
||||
if (self->optimizer.ftrl == NULL) return NULL;
|
||||
return ftrl_weights_finalize_sparse(self->optimizer.ftrl);
|
||||
}
|
||||
|
||||
return true;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
#include "averaged_perceptron_tagger.h"
|
||||
#include "collections.h"
|
||||
#include "features.h"
|
||||
#include "ftrl.h"
|
||||
#include "logistic_regression.h"
|
||||
#include "minibatch.h"
|
||||
#include "sparse_matrix.h"
|
||||
@@ -21,28 +22,39 @@
|
||||
* Helper struct for training logistic regression model
|
||||
*/
|
||||
|
||||
typedef enum {
|
||||
LOGISTIC_REGRESSION_OPTIMIZER_SGD,
|
||||
LOGISTIC_REGRESSION_OPTIMIZER_FTRL
|
||||
} logistic_regression_optimizer_type;
|
||||
|
||||
typedef struct logistic_regression_trainer {
|
||||
trie_t *feature_ids; // Trie mapping features to array indices
|
||||
size_t num_features; // Number of features
|
||||
khash_t(str_uint32) *label_ids; // Hashtable mapping labels to array indices
|
||||
size_t num_labels; // Number of labels
|
||||
double_matrix_t *weights; // Matrix of logistic regression weights
|
||||
double_matrix_t *gradient; // Gradient matrix to be reused
|
||||
khash_t(int_set) *unique_columns; // Unique columns set
|
||||
uint32_array *batch_columns; // Unique columns as array
|
||||
uint32_array *last_updated; // Array of length N indicating the last time each feature was updated
|
||||
double lambda; // Regularization weight
|
||||
uint32_t iters; // Number of iterations, used to decay learning rate
|
||||
uint32_t epochs; // Number of epochs
|
||||
double gamma_0; // Initial learning rate
|
||||
trie_t *feature_ids; // Trie mapping features to array indices
|
||||
size_t num_features; // Number of features
|
||||
khash_t(str_uint32) *label_ids; // Hashtable mapping labels to array indices
|
||||
size_t num_labels; // Number of labels
|
||||
double_matrix_t *gradient; // Gradient matrix to be reused
|
||||
khash_t(int_uint32) *unique_columns; // Unique columns set
|
||||
uint32_array *batch_columns; // Unique columns as array
|
||||
double_matrix_t *batch_weights; // Weights updated in this batch
|
||||
uint32_t epochs; // Number of epochs
|
||||
logistic_regression_optimizer_type optimizer_type; // Trainer type
|
||||
union {
|
||||
sgd_trainer_t *sgd; // Stochastic (ok, minibatch) gradient descent
|
||||
ftrl_trainer_t *ftrl; // Follow-the-regularized-leader (FTRL) Proximal
|
||||
} optimizer;
|
||||
} logistic_regression_trainer_t;
|
||||
|
||||
logistic_regression_trainer_t *logistic_regression_trainer_init_sgd(trie_t *feature_ids, khash_t(str_uint32) *label_ids, bool fit_intercept, regularization_type_t reg_type, double lambda, double gamma_0);
|
||||
logistic_regression_trainer_t *logistic_regression_trainer_init_ftrl(trie_t *feature_ids, khash_t(str_uint32) *label_ids, double lambda1, double lambda2, double alpha, double beta);
|
||||
bool logistic_regression_trainer_reset_params_sgd(logistic_regression_trainer_t *self, double lambda, double gamma_0);
|
||||
bool logistic_regression_trainer_reset_params_ftrl(logistic_regression_trainer_t *self, double alpha, double beta, double lambda1, double lambda2);
|
||||
bool logistic_regression_trainer_train_minibatch(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels);
|
||||
double logistic_regression_trainer_minibatch_cost(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels);
|
||||
|
||||
logistic_regression_trainer_t *logistic_regression_trainer_init(trie_t *feature_ids, khash_t(str_uint32) *label_ids, double gamma_0, double lambda);
|
||||
|
||||
bool logistic_regression_trainer_train_batch(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels);
|
||||
double logistic_regression_trainer_batch_cost(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels);
|
||||
bool logistic_regression_trainer_finalize(logistic_regression_trainer_t *self);
|
||||
double_matrix_t *logistic_regression_trainer_get_weights(logistic_regression_trainer_t *self);
|
||||
double_matrix_t *logistic_regression_trainer_get_regularized_weights(logistic_regression_trainer_t *self);
|
||||
double_matrix_t *logistic_regression_trainer_final_weights(logistic_regression_trainer_t *self);
|
||||
sparse_matrix_t *logistic_regression_trainer_final_weights_sparse(logistic_regression_trainer_t *self);
|
||||
|
||||
void logistic_regression_trainer_destroy(logistic_regression_trainer_t *self);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user