[osm/formatting] Adding OSM polygon lookups and neighborhood polygon lookups to the training data in order to provide more variations for the model to work with

This commit is contained in:
Al
2015-11-21 17:05:35 -05:00
parent 9fc60600dd
commit c8f47b38a2

View File

@@ -12,25 +12,25 @@ plenty of disk space. The following commands can be used in parallel to create
all the training sets:
Ways:
python osm_address_training_data.py -s $(OSM_DIR)/planet-ways.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
python osm_address_training_data.py -s $(OSM_DIR)/planet-ways.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Venues:
python osm_address_training_data.py -v $(OSM_DIR)/planet-venues.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
python osm_address_training_data.py -v $(OSM_DIR)/planet-venues.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Address streets:
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) -o $(OUT_DIR)
Limited formatted addresses:
python osm_address_training_data.py -a -l $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
python osm_address_training_data.py -a -l $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) -o $(OUT_DIR)
Formatted addresses (tagged):
python osm_address_training_data.py -a -f $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
python osm_address_training_data.py -a -f $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Formatted addresses (untagged):
python osm_address_training_data.py -a -f -u $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
python osm_address_training_data.py -a -f -u $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Toponyms:
python osm_address_training_data.py -b $(OSM_DIR)/planet-borders.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
python osm_address_training_data.py -b $(OSM_DIR)/planet-borders.osm --language-rtree-dir=$(LANG_RTREE_DIR) -o $(OUT_DIR)
'''
import argparse
@@ -61,7 +61,9 @@ from geodata.states.state_abbreviations import STATE_ABBREVIATIONS
from geodata.language_id.polygon_lookup import country_and_languages
from geodata.i18n.languages import *
from geodata.address_formatting.formatter import AddressFormatter
from geodata.osm.extract import *
from geodata.polygons.language_polys import *
from geodata.polygons.reverse_geocoder import ReverseGeocoder
from geodata.i18n.unicode_paths import DATA_DIR
from geodata.csv_utils import *
@@ -69,18 +71,12 @@ from geodata.file_utils import *
this_dir = os.path.realpath(os.path.dirname(__file__))
WAY_OFFSET = 10 ** 15
RELATION_OFFSET = 2 * 10 ** 15
# Input files
PLANET_ADDRESSES_INPUT_FILE = 'planet-addresses.osm'
PLANET_WAYS_INPUT_FILE = 'planet-ways.osm'
PLANET_VENUES_INPUT_FILE = 'planet-venues.osm'
PLANET_BORDERS_INPUT_FILE = 'planet-borders.osm'
ALL_OSM_TAGS = set(['node', 'way', 'relation'])
WAYS_RELATIONS = set(['way', 'relation'])
# Output files
WAYS_LANGUAGE_DATA_FILENAME = 'streets_by_language.tsv'
ADDRESS_LANGUAGE_DATA_FILENAME = 'address_streets_by_language.tsv'
@@ -192,40 +188,10 @@ osm_fields = [
]
# Currently, all our data sets are converted to nodes with osmconvert before parsing
def parse_osm(filename, allowed_types=ALL_OSM_TAGS):
f = open(filename)
parser = etree.iterparse(f)
single_type = len(allowed_types) == 1
for (_, elem) in parser:
elem_id = long(elem.attrib.pop('id', 0))
item_type = elem.tag
if elem_id >= WAY_OFFSET and elem_id < RELATION_OFFSET:
elem_id -= WAY_OFFSET
item_type = 'way'
elif elem_id >= RELATION_OFFSET:
elem_id -= RELATION_OFFSET
item_type = 'relation'
if item_type in allowed_types:
attrs = OrderedDict(elem.attrib)
attrs.update(OrderedDict([(e.attrib['k'], e.attrib['v'])
for e in elem.getchildren() if e.tag == 'tag']))
key = elem_id if single_type else '{}:{}'.format(item_type, elem_id)
yield key, attrs
if elem.tag != 'tag':
elem.clear()
while elem.getprevious() is not None:
del elem.getparent()[0]
def write_osm_json(filename, out_filename):
out = open(out_filename, 'w')
writer = csv.writer(out, 'tsv_no_quote')
for key, attrs in parse_osm(filename):
for key, attrs, deps in parse_osm(filename):
writer.writerow((key, json.dumps(attrs)))
out.close()
@@ -243,63 +209,6 @@ def normalize_osm_name_tag(tag, script=False):
return norm.split('_', 1)[0]
beginning_re = re.compile('^[^0-9\-]+', re.UNICODE)
end_re = re.compile('[^0-9]+$', re.UNICODE)
latitude_dms_regex = re.compile(ur'^(-?[0-9]{1,2})[ ]*[ :°ºd][ ]*([0-5]?[0-9])?[ ]*[:\'\u2032m]?[ ]*([0-5]?[0-9](?:\.\d+)?)?[ ]*[:\?\"\u2033s]?[ ]*(N|n|S|s)?$', re.I | re.UNICODE)
longitude_dms_regex = re.compile(ur'^(-?1[0-8][0-9]|0?[0-9]{1,2})[ ]*[ :°ºd][ ]*([0-5]?[0-9])?[ ]*[:\'\u2032m]?[ ]*([0-5]?[0-9](?:\.\d+)?)?[ ]*[:\?\"\u2033s]?[ ]*(E|e|W|w)?$', re.I | re.UNICODE)
latitude_decimal_with_direction_regex = re.compile('^(-?[0-9][0-9](?:\.[0-9]+))[ ]*[ :°ºd]?[ ]*(N|n|S|s)$', re.I)
longitude_decimal_with_direction_regex = re.compile('^(-?1[0-8][0-9]|0?[0-9][0-9](?:\.[0-9]+))[ ]*[ :°ºd]?[ ]*(E|e|W|w)$', re.I)
def latlon_to_floats(latitude, longitude):
have_lat = False
have_lon = False
latitude = safe_decode(latitude).strip(u' ,;|')
longitude = safe_decode(longitude).strip(u' ,;|')
latitude = latitude.replace(u',', u'.')
longitude = longitude.replace(u',', u'.')
lat_dms = latitude_dms_regex.match(latitude)
lat_dir = latitude_decimal_with_direction_regex.match(latitude)
if lat_dms:
d, m, s, c = lat_dms.groups()
sign = direction_sign(c)
latitude = degrees_to_decimal(d or 0, m or 0, s or 0)
have_lat = True
elif lat_dir:
d, c = lat_dir.groups()
sign = direction_sign(c)
latitude = float(d) * sign
have_lat = True
else:
latitude = re.sub(beginning_re, u'', latitude)
latitude = re.sub(end_re, u'', latitude)
lon_dms = longitude_dms_regex.match(longitude)
lon_dir = longitude_decimal_with_direction_regex.match(longitude)
if lon_dms:
d, m, s, c = lon_dms.groups()
sign = direction_sign(c)
longitude = degrees_to_decimal(d or 0, m or 0, s or 0)
have_lon = True
elif lon_dir:
d, c = lon_dir.groups()
sign = direction_sign(c)
longitude = float(d) * sign
have_lon = True
else:
longitude = re.sub(beginning_re, u'', longitude)
longitude = re.sub(end_re, u'', longitude)
return float(latitude), float(longitude)
def get_language_names(language_rtree, key, value, tag_prefix='name'):
if not ('lat' in value and 'lon' in value):
return None, None
@@ -309,7 +218,7 @@ def get_language_names(language_rtree, key, value, tag_prefix='name'):
tag_last_component = tag_prefix.split(':')[-1]
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
return None, None
@@ -401,7 +310,7 @@ def build_ways_training_data(language_rtree, infile, out_dir):
f = open(os.path.join(out_dir, WAYS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile, allowed_types=WAYS_RELATIONS):
for key, value, deps in parse_osm(infile, allowed_types=WAYS_RELATIONS):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
@@ -425,7 +334,21 @@ def strip_keys(value, ignore_keys):
value.pop(key, None)
def build_address_format_training_data(language_rtree, infile, out_dir, tag_components=True):
def osm_reverse_geocoded_components(address_components, admin_rtree, country, latitude, longitude):
ret = defaultdict(list)
for props in admin_rtree.point_in_poly(latitude, longitude, return_all=True):
name = props.get('name')
if not name:
continue
for k, v in props.iteritems():
normalized_key = osm_address_components.get_component(country, k, v)
if normalized_key:
ret[normalized_key].append(props)
return ret
def build_address_format_training_data(admin_rtree, language_rtree, neighborhoods_rtree, infile, out_dir, tag_components=True):
'''
Creates formatted address training data for supervised sequence labeling (or potentially
for unsupervised learning e.g. for word vectors) using addr:* tags in OSM.
@@ -457,6 +380,7 @@ def build_address_format_training_data(language_rtree, infile, out_dir, tag_comp
i = 0
formatter = AddressFormatter()
osm_address_components.configure()
if tag_components:
formatted_tagged_file = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_TAGGED_FILENAME), 'w')
@@ -467,9 +391,9 @@ def build_address_format_training_data(language_rtree, infile, out_dir, tag_comp
remove_keys = OSM_IGNORE_KEYS
for key, value in parse_osm(infile):
for key, value, deps in parse_osm(infile):
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
continue
@@ -519,6 +443,8 @@ def build_address_format_training_data(language_rtree, infile, out_dir, tag_comp
3. This is implicit, but with probability (1-b)(1-a), keep the country code
'''
non_local_language = None
# 1. use the country name in the current language or the country's local language
if address_country and random.random() < 0.8:
localized = None
@@ -532,8 +458,8 @@ def build_address_format_training_data(language_rtree, infile, out_dir, tag_comp
address_components[AddressFormatter.COUNTRY] = localized
# 2. country's name in a language samples from the distribution of languages on the Internet
elif address_country and random.random() < 0.5:
lang = sample_random_language()
lang_country = language_country_names.get(lang, {}).get(address_country.upper())
non_local_language = sample_random_language()
lang_country = language_country_names.get(non_local_language, {}).get(address_country.upper())
if lang_country:
address_components[AddressFormatter.COUNTRY] = lang_country
# 3. Implicit: the rest of the time keep the country code
@@ -554,6 +480,95 @@ def build_address_format_training_data(language_rtree, infile, out_dir, tag_comp
if state_full_name and random.random() < 0.3:
address_components[AddressFormatter.STATE] = state_full_name
'''
OSM boundaries
--------------
For many addresses, the city, district, region, etc. are all implicitly
generated by the reverse geocoder e.g. we do not need an addr:city tag
to identify that 40.74, -74.00 is in New York City as well as its parent
geographies (New York county, New York state, etc.)
Where possible we augment the addr:* tags with some of the reverse-geocoded
relations from OSM.
Since addresses found on the web may have the same properties, we
include these qualifiers in the training data.
'''
osm_components = osm_reverse_geocoded_components(address_components, admin_rtree, country, latitude, longitude)
if osm_components:
if non_local_language is not None:
suffix = ':{}'.format(non_local_language)
else:
suffix = ''
name_key = ''.join(('name', suffix))
raw_name_key = 'name'
short_name_key = ''.join(('short_name', suffix))
raw_short_name_key = 'short_name'
alt_name_key = ''.join('alt_name', suffix)
raw_alt_name_key = 'alt_name'
official_name_key = ''.join('official_name', suffix)
raw_official_name_key = 'official_name'
poly_components = defaultdict(list)
for component, values in osm_components.iteritems():
seen = set()
# Choose which name to use with given probabilities
r = random.random()
if r < 0.1:
# 10% of the time use the short name
key = short_name_key
raw_key = raw_short_name_key
elif r < 0.2:
# 10% of the time use the official name
key = official_name_key
raw_key = raw_official_name_key
elif r < 0.3:
# 10% of the time use the official name
key = alt_name_key
raw_key = raw_alt_name_key
else:
# 70% of the time use the name tag
key = name_key
raw_key = raw_name_key
for value in values:
name = value.get(key, value.get(raw_key))
if not name:
name = value.get(name_key, value.get(raw_name_key))
if not name:
continue
if (component, name) not in seen:
poly_components[component].append(name)
seen.add((component, name))
for component, vals in poly_components.iteritems():
if component not in address_components:
address_components[component] = u', '.join(vals)
'''
Neighborhoods
-------------
In some cities, neighborhoods may be included in a free-text address.
OSM includes many neighborhoods but only as points, rather than the polygons
needed to perform reverse-geocoding. We use a hybrid index containing
Quattroshapes/Zetashapes polygons matched fuzzily with OSM names (which are
on the whole of better quality).
'''
neighborhood = neighborhoods_rtree.point_in_poly(latitude, longitude)
if neighborhood and AddressFormatter.SUBURB not in address_components:
address_components[AddressFormatter.SUBURB] = neighborhood['name']
# Version with all components
formatted_address = formatter.format_address(country, address_components, tag_components=tag_components, minimal_only=not tag_components)
@@ -601,7 +616,12 @@ COUNTRY_KEYS = (
'country',
'country_name',
'addr:country',
'is_in:country',
'addr:country_code',
'country_code',
'is_in:country_code'
)
POSTAL_KEYS = (
'postcode',
'postal_code',
@@ -610,7 +630,7 @@ POSTAL_KEYS = (
)
def build_address_format_training_data_limited(language_rtree, infile, out_dir):
def build_address_format_training_data_limited(rtree, language_rtree, infile, out_dir):
'''
Creates a special kind of formatted address training data from OSM's addr:* tags
but are designed for use in language classification. These records are similar
@@ -632,9 +652,9 @@ def build_address_format_training_data_limited(language_rtree, infile, out_dir):
remove_keys = NAME_KEYS + COUNTRY_KEYS + POSTAL_KEYS + OSM_IGNORE_KEYS
for key, value in parse_osm(infile):
for key, value, deps in parse_osm(infile):
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
continue
@@ -675,23 +695,6 @@ def build_address_format_training_data_limited(language_rtree, infile, out_dir):
print 'did', i, 'formatted addresses'
apposition_regex = re.compile('(.*[^\s])[\s]*\([\s]*(.*[^\s])[\s]*\)$', re.I)
html_parser = HTMLParser.HTMLParser()
def normalize_wikipedia_title(title):
match = apposition_regex.match(title)
if match:
title = match.group(1)
title = safe_decode(title)
title = html_parser.unescape(title)
title = urllib.unquote_plus(title)
return title.replace(u'_', u' ').strip()
def build_toponym_training_data(language_rtree, infile, out_dir):
'''
Data set of toponyms by language and country which should assist
@@ -709,12 +712,12 @@ def build_toponym_training_data(language_rtree, infile, out_dir):
f = open(os.path.join(out_dir, TOPONYM_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile):
for key, value, deps in parse_osm(infile):
if not sum((1 for k, v in value.iteritems() if k.startswith('name'))) > 0:
continue
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
continue
@@ -803,7 +806,7 @@ def build_address_training_data(langauge_rtree, infile, out_dir, format=False):
f = open(os.path.join(out_dir, ADDRESS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile):
for key, value, deps in parse_osm(infile):
country, street_language = get_language_names(language_rtree, key, value, tag_prefix='addr:street')
if not street_language:
continue
@@ -830,7 +833,7 @@ def build_venue_training_data(language_rtree, infile, out_dir):
f = open(os.path.join(out_dir, VENUE_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile):
for key, value, deps in parse_osm(infile):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
@@ -894,10 +897,22 @@ if __name__ == '__main__':
default=tempfile.gettempdir(),
help='Temp directory to use')
parser.add_argument('-r', '--rtree-dir',
parser.add_argument('-g', '--language-rtree-dir',
required=True,
help='Language RTree directory')
parser.add_argument('-r', '--osm-rtree-dir',
default=None,
help='OSM reverse geocoder RTree directory')
parser.add_argument('-q', '--quattroshapes-rtree-dir',
default=None,
help='Quattroshapes reverse geocoder RTree directory')
parser.add_argument('-n', '--neighborhoods-rtree-dir',
default=None,
help='Neighborhoods reverse geocoder RTree directory')
parser.add_argument('-o', '--out-dir',
default=os.getcwd(),
help='Output directory')
@@ -907,7 +922,13 @@ if __name__ == '__main__':
init_country_names()
init_languages()
language_rtree = LanguagePolygonIndex.load(args.rtree_dir)
language_rtree = LanguagePolygonIndex.load(args.language_rtree_dir)
rtree = None
if args.osm_rtree_dir:
osm_rtree = OSMReverseGeocoder.load(args.osm_rtree_dir)
if args.quattroshapes_rtree_dir:
quattroshapes_rtree = QuattroshapesReverseGeocoder.load(args.quattroshapes_rtree_dir)
street_types_gazetteer.configure()
@@ -916,11 +937,15 @@ if __name__ == '__main__':
build_ways_training_data(language_rtree, args.streets_file, args.out_dir)
if args.borders_file:
build_toponym_training_data(language_rtree, args.borders_file, args.out_dir)
if args.address_file and not args.format_only and not args.limited_addresses:
build_address_training_data(language_rtree, args.address_file, args.out_dir)
elif args.address_file and rtree is None:
parser.error('--rtree-dir required for formatted addresses')
if args.address_file and args.format_only:
build_address_format_training_data(language_rtree, args.address_file, args.out_dir, tag_components=not args.untagged)
build_address_format_training_data(rtree, language_rtree, args.address_file, args.out_dir, tag_components=not args.untagged)
if args.address_file and args.limited_addresses:
build_address_format_training_data_limited(language_rtree, args.address_file, args.out_dir)
build_address_format_training_data_limited(rtree, language_rtree, args.address_file, args.out_dir)
if args.venues_file:
build_venue_training_data(language_rtree, args.venues_file, args.out_dir)
build_venue_training_data(rtree, language_rtree, args.venues_file, args.out_dir)