[parser/osm] OSM address formatter using the new component expansion

This commit is contained in:
Al
2016-05-22 12:21:50 -04:00
parent cb78598131
commit 49312e163f

View File

@@ -0,0 +1,502 @@
import os
import six
import sys
import yaml
from collections import OrderedDict
this_dir = os.path.realpath(os.path.dirname(__file__))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
from geodata.address_expansions.gazetteers import *
from geodata.address_expansions.abbreviations import abbreviate
from geodata.address_formatting.aliases import Aliases
from geodata.address_formatting.formatter import AddressFormatter
from geodata.addresses.config import address_config
from geodata.addresses.components import AddressComponents
from geodata.categories.config import category_config
from geodata.categories.query import Category, NULL_CATEGORY_QUERY
from geodata.chains.query import Chain, NULL_CHAIN_QUERY
from geodata.coordinates.conversion import *
from geodata.configs.utils import nested_get
from geodata.countries.country_names import *
from geodata.language_id.disambiguation import *
from geodata.i18n.languages import *
from geodata.address_formatting.formatter import AddressFormatter
from geodata.osm.extract import *
from geodata.polygons.language_polys import *
from geodata.polygons.reverse_geocode import *
from geodata.i18n.unicode_paths import DATA_DIR
from geodata.csv_utils import *
from geodata.file_utils import *
OSM_PARSER_DATA_DEFAULT_CONFIG = os.path.join(this_dir, os.pardir, os.pardir, os.pardir,
'resources', 'parser', 'data_sets', 'osm.yaml')
class OSMAddressFormatter(object):
aliases = Aliases(
OrderedDict([
('name', AddressFormatter.HOUSE),
('addr:housename', AddressFormatter.HOUSE),
('addr:housenumber', AddressFormatter.HOUSE_NUMBER),
('addr:house_number', AddressFormatter.HOUSE_NUMBER),
('addr:street', AddressFormatter.ROAD),
('addr:place', AddressFormatter.ROAD),
('level', AddressFormatter.LEVEL),
('addr:floor', AddressFormatter.LEVEL),
('addr:unit', AddressFormatter.UNIT),
('addr:flats', AddressFormatter.UNIT),
('addr:door', AddressFormatter.UNIT),
('addr:suite', AddressFormatter.UNIT),
('addr:suburb', AddressFormatter.SUBURB),
('is_in:suburb', AddressFormatter.SUBURB),
('addr:neighbourhood', AddressFormatter.SUBURB),
('is_in:neighbourhood', AddressFormatter.SUBURB),
('addr:neighborhood', AddressFormatter.SUBURB),
('is_in:neighborhood', AddressFormatter.SUBURB),
('addr:barangay', AddressFormatter.SUBURB),
# Used in the UK for civil parishes, sometimes others
('addr:locality', AddressFormatter.SUBURB),
# This is actually used for suburb
('suburb', AddressFormatter.SUBURB),
('addr:city', AddressFormatter.CITY),
('is_in:city', AddressFormatter.CITY),
('addr:locality', AddressFormatter.CITY),
('is_in:locality', AddressFormatter.CITY),
('addr:municipality', AddressFormatter.CITY),
('is_in:municipality', AddressFormatter.CITY),
('addr:hamlet', AddressFormatter.CITY),
('is_in:hamlet', AddressFormatter.CITY),
('addr:quarter', AddressFormatter.CITY_DISTRICT),
('addr:county', AddressFormatter.STATE_DISTRICT),
('addr:district', AddressFormatter.STATE_DISTRICT),
('is_in:district', AddressFormatter.STATE_DISTRICT),
('addr:state', AddressFormatter.STATE),
('is_in:state', AddressFormatter.STATE),
('addr:province', AddressFormatter.STATE),
('is_in:province', AddressFormatter.STATE),
('addr:region', AddressFormatter.STATE),
('is_in:region', AddressFormatter.STATE),
# Used in Tunisia
('addr:governorate', AddressFormatter.STATE),
('addr:postal_code', AddressFormatter.POSTCODE),
('addr:postcode', AddressFormatter.POSTCODE),
('addr:zipcode', AddressFormatter.POSTCODE),
('addr:country', AddressFormatter.COUNTRY),
('addr:country_code', AddressFormatter.COUNTRY),
('country_code', AddressFormatter.COUNTRY),
('is_in:country_code', AddressFormatter.COUNTRY),
('is_in:country', AddressFormatter.COUNTRY),
])
)
def __init__(self, components):
# Instance of AddressComponents, contains structures for reverse geocoding, etc.
self.components = components
self.language_rtree = components.language_rtree
self.config = yaml.load(open(OSM_PARSER_DATA_DEFAULT_CONFIG))
self.formatter = AddressFormatter()
def pick_language(self, osm_tags, candidate_languages):
language = None
pick_namespaced_language_prob = float(nested_get(self.config, ('languages', 'pick_namespaced_language_probability'), default=0.0))
if len(candidate_languages) == 1:
language = candidate_languages[0]['lang']
else:
street = osm_tags.get('addr:street', None)
namespaced = [l['lang'] for l in candidate_languages if 'addr:street:{}'.format(l['lang']) in osm_tags]
if street is not None and not namespaced:
language = disambiguate_language(street, [(l['lang'], l['default']) for l in candidate_languages])
elif namespaced and random.random() < pick_namespaced_language_prob:
language = random.choice(namespaced)
lang_suffix = ':{}'.format(language)
for k in osm_tags:
if k.startswith('addr:') and k.endswith(lang_suffix):
osm_tags[k.rstrip(lang_suffix)] = osm_tags[k]
else:
language = UNKNOWN_LANGUAGE
return language
def normalize_address_components(self, tags):
address_components = {k: v for k, v in six.iteritems(tags) if self.aliases.get(k)}
self.aliases.replace(address_components)
address_components = {k: v for k, v in six.iteritems(address_components) if k in AddressFormatter.address}
return address_components
def abbreviated_street(self, street, language):
'''
Street abbreviations
--------------------
Use street and unit type dictionaries to probabilistically abbreviate
phrases. Because the abbreviation is picked at random, this should
help bridge the gap between OSM addresses and user input, in addition
to capturing some non-standard abbreviations/surface forms which may be
missing or sparse in OSM.
'''
abbreviate_prob = float(nested_get(self.config, ('street', 'abbreviate_probability'), default=0.0))
separate_prob = float(nested_get(self.config, ('street', 'separate_probability'), default=0.0))
return abbreviate(street_and_synonyms_gazetteer, street, language,
abbreviate_prob=abbreviate_prob, separate_prob=separate_prob)
def abbreviated_venue_name(self, name, language):
'''
Venue abbreviations
-------------------
Use street and unit type dictionaries to probabilistically abbreviate
phrases. Because the abbreviation is picked at random, this should
help bridge the gap between OSM addresses and user input, in addition
to capturing some non-standard abbreviations/surface forms which may be
missing or sparse in OSM.
'''
abbreviate_prob = float(nested_get(self.config, ('venue', 'abbreviate_probability'), default=0.0))
separate_prob = float(nested_get(self.config, ('venue', 'separate_probability'), default=0.0))
return abbreviate(names_gazetteer, name, language,
abbreviate_prob=abbreviate_prob, separate_prob=separate_prob)
def combine_street_name(self, props):
'''
Combine street names
--------------------
In the UK sometimes streets have "parent" streets and
both will be listed in the address.
Example: http://www.openstreetmap.org/node/2933503941
'''
# In the UK there's sometimes the notion of parent and dependent streets
if 'addr:parentstreet' not in props or 'addr:street' not in props:
return False
street = safe_decode(props['addr:street'])
parent_street = props.pop('addr:parentstreet', None)
if parent_street:
props['addr:street'] = six.u(', ').join(street, safe_decode(parent_street))
return True
return False
def venue_names(self, props):
'''
Venue names
-----------
Some venues have multiple names listed in OSM, grab them all
With a certain probability, add None to the list so we drop the name
'''
venue_names = []
for key in ('name', 'alt_name', 'loc_name', 'int_name', 'old_name'):
venue_name = props.get(key)
if venue_name:
venue_names.append(venue_name)
return venue_names
def formatted_addresses_with_venue_names(self, address_components, venue_names, country, language=None, tag_components=True, minimal_only=False):
# Since venue names are only one-per-record, this wrapper will try them all (name, alt_name, etc.)
formatted_addresses = []
if AddressFormatter.HOUSE not in address_components or not venue_names:
return [self.formatter.format_address(address_components, country, language=language,
tag_components=tag_components, minimal_only=minimal_only)]
for venue_name in venue_names:
if venue_name:
address_components[AddressFormatter.HOUSE] = venue_name
formatted_address = self.formatter.format_address(address_components, country, language=language,
tag_components=tag_components, minimal_only=minimal_only)
formatted_addresses.append(formatted_address)
return formatted_addresses
def formatted_places(self, address_components, country, language, tag_components=True):
formatted_addresses = []
place_components = self.components.drop_address(address_components)
formatted_address = self.formatter.format_address(address_components, country, language=language,
tag_components=tag_components, minimal_only=False)
formatted_addresses.append(formatted_address)
if AddressFormatter.POSTCODE in address_components:
drop_postcode_prob = float(nested_get(self.config, ('places', 'drop_postcode_probability'), default=0.0))
if random.random() < drop_postcode_prob:
place_components = self.components.drop_postcode(address_components)
formatted_address = self.formatter.format_address(address_components, country, language=language,
tag_components=tag_components, minimal_only=False)
formatted_addresses.append(formatted_address)
return formatted_addresses
def category_queries(self, tags, address_components, language, country=None, tag_components=True):
formatted_addresses = []
possible_category_keys = category_config.has_keys(language, tags)
plural_prob = float(nested_get(self.config, ('categories', 'plural_probability'), default=0.0))
place_only_prob = float(nested_get(self.config, ('categories', 'place_only_probability'), default=0.0))
for key in possible_category_keys:
value = tags[key]
phrase = Category.phrase(language, key, value, country=country, is_plural=random.random() < plural_prob)
if phrase is not NULL_CATEGORY_QUERY:
if phrase.add_place_name or phrase.add_address:
address_components = self.components.drop_names(address_components)
if phrase.add_place_name and random.random() < place_only_prob:
address_components = self.components.drop_address(address_components)
formatted_address = self.formatter.format_category_query(phrase, address_components, country, language, tag_components=tag_components)
if formatted_address:
formatted_addresses.append(formatted_address)
return formatted_addresses
def chain_queries(self, venue_name, address_components, language, country=None, tag_components=True):
'''
Chain queries
-------------
Generates strings like "Duane Reades in Brooklyn NY"
'''
is_chain, phrases = Chain.extract(venue_name)
formatted_addresses = []
if is_chain:
sample_probability = float(nested_get(self.config, ('chains', 'sample_probability'), default=0.0))
place_only_prob = float(nested_get(self.config, ('chains', 'place_only_probability'), default=0.0))
for t, c, l, vals in phrases:
for d in vals:
lang, dictionary, is_canonical, canonical = safe_decode(d).split(six.u('|'))
name = canonical
if random.random() < sample_probability:
names = address_config.sample_phrases.get((language, dictionary), {}).get(canonical, [])
if names:
name = random.choice(names)
phrase = Chain.phrase(name, language, country)
if phrase is not NULL_CHAIN_QUERY:
if phrase.add_place_name or phrase.add_address:
address_components = self.components.drop_names(address_components)
if phrase.add_place_name and random.random() < place_only_prob:
address_components = self.components.drop_address(address_components)
formatted_address = self.formatter.format_chain_query(phrase, address_components, country, language, tag_components=tag_components)
if formatted_address:
formatted_addresses.append(formatted_address)
return formatted_addresses
def formatted_addresses(self, tags, tag_components=True):
'''
Formatted addresses
-------------------
Produces one or more formatted addresses (tagged/untagged)
from the given dictionary of OSM tags and values.
Here we also apply component dropout meaning we produce several
different addresses with various components removed at random.
That way the parser will have many examples of queries that are
just city/state or just house_number/street. The selected
components still have to make sense i.e. a lone house_number will
not be used without a street name. The dependencies are listed
above, see: OSM_ADDRESS_COMPONENTS.
If there is more than one venue name (say name and alt_name),
addresses using both names and the selected components are
returned.
'''
venue_names = self.venue_names(tags) or []
try:
latitude, longitude = latlon_to_decimal(tags['lat'], tags['lon'])
except Exception:
return None, None, None
combined_street = self.combine_street_name(tags)
revised_tags = self.normalize_address_components(tags)
address_components, country, language = self.components.expanded(revised_tags, latitude, longitude)
if not address_components:
return None, None, None
# Abbreviate the street name with random probability
street_name = address_components.get(AddressFormatter.ROAD)
if street_name:
address_components[AddressFormatter.ROAD] = self.abbreviated_street(street_name, language)
# Ditto for venue names
for venue_name in venue_names:
abbreviated_venue = self.abbreviated_venue_name(venue_name, language)
if abbreviated_venue != venue_name and abbreviated_venue not in set(venue_names):
venue_names.append(abbreviated_venue)
formatted_addresses = self.formatted_addresses_with_venue_names(address_components, venue_names, country, language=language,
tag_components=tag_components, minimal_only=not tag_components)
formatted_addresses.extend(self.formatted_places(address_components, country, language))
# Generate a PO Box address at random (only returns non-None values occasionally) and add it to the list
po_box_components = self.components.po_box_address(address_components, language, country=country)
if po_box_components:
formatted_addresses.extend(self.formatted_addresses_with_venue_names(po_box_components, venue_names, country, language=language,
tag_components=tag_components, minimal_only=False))
formatted_addresses.extend(self.category_queries(tags, address_components, language, country, tag_components=tag_components))
venue_name = tags.get('name')
if venue_name:
formatted_addresses.extend(self.chain_queries(venue_name, address_components, language, country, tag_components=tag_components))
if tag_components:
if not address_components:
return []
# Pick a random dropout order
dropout_order = self.components.address_level_dropout_order(address_components)
for component in dropout_order:
address_components.pop(component, None)
formatted_addresses.extend(self.formatted_addresses_with_venue_names(address_components, venue_names, country, language=language,
tag_components=tag_components, minimal_only=False))
return OrderedDict.fromkeys(formatted_addresses).keys(), country, language
def formatted_address_limited(self, tags):
try:
latitude, longitude = latlon_to_decimal(tags['lat'], tags['lon'])
except Exception:
return None, None, None
revised_tags = self.normalize_address_components(tags)
admin_dropout_prob = float(nested_get(self.config, ('limited', 'admin_dropout_prob'), default=0.0))
address_components, country, language = self.components.limited(revised_tags, latitude, longitude)
if not address_components:
return None, None, None
address_components = {k: v for k, v in address_components.iteritems() if k in OSM_ADDRESS_COMPONENT_VALUES}
if not address_components:
return []
for component in (AddressFormatter.COUNTRY, AddressFormatter.STATE,
AddressFormatter.STATE_DISTRICT, AddressFormatter.CITY,
AddressFormatter.CITY_DISTRICT, AddressFormatter.SUBURB):
if random.random() < admin_dropout_prob:
_ = address_components.pop(component, None)
if not address_components:
return None, None, None
# Version with all components
formatted_address = self.formatter.format_address(address_components, country, language, tag_components=False, minimal_only=False)
return formatted_address, country, language
def build_training_data(self, infile, out_dir, tag_components=True):
'''
Creates formatted address training data for supervised sequence labeling (or potentially
for unsupervised learning e.g. for word vectors) using addr:* tags in OSM.
Example:
cs cz Gorkého/road ev.2459/house_number | 40004/postcode Trmice/city | CZ/country
The field structure is similar to other training data created by this script i.e.
{language, country, data}. The data field here is a sequence of labeled tokens similar
to what we might see in part-of-speech tagging.
This format uses a special character "|" to denote possible breaks in the input (comma, newline).
Note that for the address parser, we'd like it to be robust to many different types
of input, so we may selectively eleminate components
This information can potentially be used downstream by the sequence model as these
breaks may be present at prediction time.
Example:
sr rs Crkva Svetog Arhangela Mihaila | Vukov put BB | 15303 Trsic
This may be useful in learning word representations, statistical phrases, morphology
or other models requiring only the sequence of words.
'''
i = 0
if tag_components:
formatted_tagged_file = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_TAGGED_FILENAME), 'w')
writer = csv.writer(formatted_tagged_file, 'tsv_no_quote')
else:
formatted_file = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_FILENAME), 'w')
writer = csv.writer(formatted_file, 'tsv_no_quote')
for node_id, value, deps in parse_osm(infile):
formatted_addresses, country, language = self.formatted_addresses(value, tag_components=tag_components)
if not formatted_addresses:
continue
for formatted_address in formatted_addresses:
if formatted_address and formatted_address.strip():
formatted_address = tsv_string(formatted_address)
if not formatted_address or not formatted_address.strip():
continue
if tag_components:
row = (language, country, formatted_address)
else:
row = formatted_address
writer.writerow(row)
i += 1
if i % 1000 == 0 and i > 0:
print('did {} formatted addresses'.format(i))
def build_limited_training_data(self, infile, out_dir):
'''
Creates a special kind of formatted address training data from OSM's addr:* tags
but are designed for use in language classification. These records are similar
to the untagged formatted records but include the language and country
(suitable for concatenation with the rest of the language training data),
and remove several fields like country which usually do not contain helpful
information for classifying the language.
Example:
nb no Olaf Ryes Plass Oslo
'''
i = 0
f = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_LANGUAGE_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for node_id, value, deps in parse_osm(infile):
formatted_address, country, language = self.formatted_address_limited(value)
if not formatted_address:
continue
if formatted_address.strip():
formatted_address = tsv_string(formatted_address.strip())
if not formatted_address or not formatted_address.strip():
continue
row = (language, country, formatted_address)
writer.writerow(row)
i += 1
if i % 1000 == 0 and i > 0:
print('did {} formatted addresses'.format(i))