529 lines
19 KiB
Python
529 lines
19 KiB
Python
# -*- coding: utf-8 -*-
|
||
import argparse
|
||
import logging
|
||
import operator
|
||
import os
|
||
import re
|
||
import six
|
||
import subprocess
|
||
import sys
|
||
|
||
this_dir = os.path.realpath(os.path.dirname(__file__))
|
||
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
|
||
|
||
from geodata.address_formatting.formatter import AddressFormatter
|
||
from geodata.coordinates.conversion import latlon_to_decimal
|
||
from geodata.encoding import safe_decode
|
||
from geodata.file_utils import ensure_dir, download_file
|
||
from geodata.i18n.unicode_properties import get_chars_by_script
|
||
from geodata.i18n.word_breaks import ideographic_scripts
|
||
from geodata.names.deduping import NameDeduper
|
||
from geodata.osm.components import osm_address_components
|
||
from geodata.osm.definitions import osm_definitions
|
||
from geodata.osm.extract import parse_osm, osm_type_and_id, NODE, WAY, RELATION, OSM_NAME_TAGS
|
||
from geodata.polygons.index import *
|
||
from geodata.polygons.reverse_geocode import QuattroshapesReverseGeocoder, OSMCountryReverseGeocoder, OSMReverseGeocoder
|
||
from geodata.statistics.tf_idf import IDFIndex
|
||
|
||
|
||
class NeighborhoodDeduper(NameDeduper):
|
||
# Lossless conversions only
|
||
replacements = {
|
||
u'saint': u'st',
|
||
u'and': u'&',
|
||
u'〇': u'0',
|
||
u'一': u'1',
|
||
u'二': u'2',
|
||
u'三': u'3',
|
||
u'四': u'4',
|
||
u'五': u'5',
|
||
u'六': u'6',
|
||
u'七': u'7',
|
||
u'八': u'8',
|
||
u'九': u'9',
|
||
u'十': u'10',
|
||
}
|
||
|
||
discriminative_words = set([
|
||
# Han numbers
|
||
u'〇', u'一',
|
||
u'二', u'三',
|
||
u'四', u'五',
|
||
u'六', u'七',
|
||
u'八', u'九',
|
||
u'十', u'百',
|
||
u'千', u'万',
|
||
u'億', u'兆',
|
||
u'京', u'第',
|
||
|
||
# Roman numerals
|
||
u'i', u'ii',
|
||
u'iii', u'iv',
|
||
u'v', u'vi',
|
||
u'vii', u'viii',
|
||
u'ix', u'x',
|
||
u'xi', u'xii',
|
||
u'xiii', u'xiv',
|
||
u'xv', u'xvi',
|
||
u'xvii', u'xviii',
|
||
u'xix', u'xx',
|
||
|
||
# English directionals
|
||
u'north', u'south',
|
||
u'east', u'west',
|
||
u'northeast', u'northwest',
|
||
u'southeast', u'southwest',
|
||
|
||
# Spanish, Portguese and Italian directionals
|
||
u'norte', u'nord', u'sur', u'sul', u'sud',
|
||
u'est', u'este', u'leste', u'oeste', u'ovest',
|
||
|
||
# New in various languages
|
||
u'new',
|
||
u'nova',
|
||
u'novo',
|
||
u'nuevo',
|
||
u'nueva',
|
||
u'nuovo',
|
||
u'nuova',
|
||
|
||
# Qualifiers
|
||
u'heights',
|
||
u'hills',
|
||
|
||
u'upper', u'lower',
|
||
u'little', u'great',
|
||
|
||
u'park',
|
||
u'parque',
|
||
|
||
u'village',
|
||
|
||
])
|
||
|
||
stopwords = set([
|
||
u'cp',
|
||
u'de',
|
||
u'la',
|
||
u'urbanizacion',
|
||
u'do',
|
||
u'da',
|
||
u'dos',
|
||
u'del',
|
||
u'community',
|
||
u'bairro',
|
||
u'barrio',
|
||
u'le',
|
||
u'el',
|
||
u'mah',
|
||
u'раион',
|
||
u'vila',
|
||
u'villa',
|
||
u'kampung',
|
||
u'ahupua`a',
|
||
|
||
])
|
||
|
||
|
||
class ClickThatHoodReverseGeocoder(GeohashPolygonIndex):
|
||
simplify_tolerance = 0.00001
|
||
preserve_topology = True
|
||
persistent_polygons = False
|
||
cache_size = 0
|
||
|
||
SCRATCH_DIR = '/tmp'
|
||
|
||
# Contains accurate boundaries for neighborhoods sans weird GeoPlanet names like "Adelphi" or "Crown Heights South"
|
||
NEIGHBORHOODS_REPO = 'https://github.com/blackmad/neighborhoods'
|
||
|
||
@classmethod
|
||
def clone_repo(cls, path):
|
||
subprocess.check_call(['rm', '-rf', path])
|
||
subprocess.check_call(['git', 'clone', cls.NEIGHBORHOODS_REPO, path])
|
||
|
||
@classmethod
|
||
def create_neighborhoods_index(cls):
|
||
scratch_dir = cls.SCRATCH_DIR
|
||
repo_path = os.path.join(scratch_dir, 'neighborhoods')
|
||
cls.clone_repo(repo_path)
|
||
|
||
neighborhoods_dir = os.path.join(scratch_dir, 'neighborhoods', 'index')
|
||
ensure_dir(neighborhoods_dir)
|
||
|
||
index = cls(save_dir=neighborhoods_dir)
|
||
|
||
have_geonames = set()
|
||
is_neighborhood = set()
|
||
|
||
for filename in os.listdir(repo_path):
|
||
path = os.path.join(repo_path, filename)
|
||
base_name = filename.split('.')[0].split('gn-')[-1]
|
||
if filename.endswith('.geojson') and filename.startswith('gn-'):
|
||
have_geonames.add(base_name)
|
||
elif filename.endswith('metadata.json'):
|
||
data = json.load(open(os.path.join(repo_path, filename)))
|
||
if data.get('neighborhoodNoun', [None])[0] in (None, 'rione'):
|
||
is_neighborhood.add(base_name)
|
||
|
||
for filename in os.listdir(repo_path):
|
||
if not filename.endswith('.geojson'):
|
||
continue
|
||
base_name = filename.rsplit('.geojson')[0]
|
||
if base_name in have_geonames:
|
||
f = open(os.path.join(repo_path, 'gn-{}'.format(filename)))
|
||
elif base_name in is_neighborhood:
|
||
f = open(os.path.join(repo_path, filename))
|
||
else:
|
||
continue
|
||
try:
|
||
index.add_geojson_like_file(json.load(f)['features'])
|
||
except ValueError:
|
||
continue
|
||
|
||
return index
|
||
|
||
|
||
class NeighborhoodReverseGeocoder(RTreePolygonIndex):
|
||
'''
|
||
Neighborhoods are very important in cities like NYC, SF, Chicago, London
|
||
and many others. We want the address parser to be trained with addresses
|
||
that sufficiently capture variations in address patterns, including
|
||
neighborhoods. Quattroshapes neighborhood data (in the US at least)
|
||
is not great in terms of names, mostly becasue GeoPlanet has so many
|
||
incorrect names. The neighborhoods project, also known as ClickThatHood
|
||
has very accurate polygons with correct names, but only for a handful
|
||
of cities. OSM usually lists neighborhoods and some other local admin
|
||
areas like boroughs as points rather than polygons.
|
||
|
||
This index merges all of the above data sets in prioritized order
|
||
(ClickThatHood > OSM > Quattroshapes) to provide unified point-in-polygon
|
||
tests for neighborhoods. The properties vary by source but each has
|
||
source has least a "name" key which in practice is what we care about.
|
||
'''
|
||
|
||
PRIORITIES_FILENAME = 'priorities.json'
|
||
|
||
DUPE_THRESHOLD = 0.9
|
||
|
||
persistent_polygons = True
|
||
cache_size = 100000
|
||
|
||
source_priorities = {
|
||
'clickthathood': 0, # Best names/polygons
|
||
'osm_cth': 1, # OSM names matched with ClickThatHood polygon
|
||
'osm_quattro': 2, # OSM names matched with Quattroshapes polygon
|
||
'quattroshapes': 3, # Good results in some countries/areas
|
||
}
|
||
|
||
level_priorities = {
|
||
'neighborhood': 0,
|
||
'local_admin': 1,
|
||
}
|
||
|
||
regex_replacements = [
|
||
# Paris arrondissements, listed like "PARIS-1ER-ARRONDISSEMENT" in Quqttroshapes
|
||
(re.compile('^paris-(?=[\d])', re.I), ''),
|
||
(re.compile('^prague(?= [\d]+$)', re.I), 'Praha'),
|
||
]
|
||
|
||
quattroshapes_city_district_patterns = [
|
||
six.u('Praha [\d]+'),
|
||
]
|
||
|
||
quattroshapes_city_district_regex = re.compile('|'.join([six.u('^\s*{}\s*$').format(p) for p in quattroshapes_city_district_patterns]), re.I | re.U)
|
||
|
||
@classmethod
|
||
def count_words(cls, s):
|
||
doc = defaultdict(int)
|
||
for t, c in NeighborhoodDeduper.content_tokens(s):
|
||
doc[t] += 1
|
||
return doc
|
||
|
||
@classmethod
|
||
def create_from_osm_and_quattroshapes(cls, filename, quattroshapes_dir, country_rtree_dir, osm_rtree_dir, output_dir):
|
||
'''
|
||
Given an OSM file (planet or some other bounds) containing neighborhoods
|
||
as points (some suburbs have boundaries)
|
||
|
||
and their dependencies, create an R-tree index for coarse-grained
|
||
reverse geocoding.
|
||
|
||
Note: the input file is expected to have been created using
|
||
osmfilter. Use fetch_osm_address_data.sh for planet or copy the
|
||
admin borders commands if using other geometries.
|
||
'''
|
||
index = cls(save_dir=output_dir)
|
||
|
||
logger = logging.getLogger('neighborhoods')
|
||
|
||
qs_scratch_dir = os.path.join(quattroshapes_dir, 'qs_neighborhoods')
|
||
ensure_dir(qs_scratch_dir)
|
||
|
||
logger.info('Creating Quattroshapes neighborhoods')
|
||
|
||
qs = QuattroshapesNeighborhoodsReverseGeocoder.create_neighborhoods_index(quattroshapes_dir, qs_scratch_dir)
|
||
logger.info('Creating ClickThatHood neighborhoods')
|
||
cth = ClickThatHoodReverseGeocoder.create_neighborhoods_index()
|
||
|
||
country_rtree = OSMCountryReverseGeocoder.load(country_rtree_dir)
|
||
|
||
osm_admin_rtree = OSMReverseGeocoder.load(osm_rtree_dir)
|
||
osm_admin_rtree.cache_size = 1000
|
||
|
||
logger.info('Creating IDF index')
|
||
idf = IDFIndex()
|
||
|
||
char_scripts = get_chars_by_script()
|
||
|
||
for idx in (cth, qs):
|
||
for i in xrange(idx.i):
|
||
props = idx.get_properties(i)
|
||
name = props.get('name')
|
||
if name is not None:
|
||
doc = cls.count_words(name)
|
||
idf.update(doc)
|
||
|
||
for key, attrs, deps in parse_osm(filename):
|
||
for k, v in six.iteritems(attrs):
|
||
if any((k.startswith(name_key) for name_key in OSM_NAME_TAGS)):
|
||
doc = cls.count_words(v)
|
||
idf.update(doc)
|
||
|
||
qs.matched = [False] * qs.i
|
||
cth.matched = [False] * cth.i
|
||
|
||
logger.info('Matching OSM points to neighborhood polygons')
|
||
# Parse OSM and match neighborhood/suburb points to Quattroshapes/ClickThatHood polygons
|
||
num_polys = 0
|
||
for element_id, attrs, deps in parse_osm(filename):
|
||
try:
|
||
lat, lon = latlon_to_decimal(attrs['lat'], attrs['lon'])
|
||
except ValueError:
|
||
continue
|
||
|
||
osm_name = attrs.get('name')
|
||
if not osm_name:
|
||
continue
|
||
|
||
id_type, element_id = element_id.split(':')
|
||
element_id = long(element_id)
|
||
|
||
props['type'] = id_type
|
||
props['id'] = element_id
|
||
|
||
possible_neighborhood = osm_definitions.meets_definition(attrs, osm_definitions.NEIGHBORHOOD)
|
||
is_neighborhood = attrs.get('place') in ('neighbourhood', 'neighborhood')
|
||
|
||
country, candidate_languages = country_rtree.country_and_languages(lat, lon)
|
||
|
||
component_name = None
|
||
|
||
component_name = osm_address_components.component_from_properties(country, attrs)
|
||
|
||
ranks = []
|
||
osm_names = []
|
||
|
||
for key in OSM_NAME_TAGS:
|
||
name = attrs.get(key)
|
||
if name:
|
||
osm_names.append(name)
|
||
|
||
for name_key in OSM_NAME_TAGS:
|
||
osm_names.extend([v for k, v in six.iteritems(attrs) if k.startswith('{}:'.format(name_key))])
|
||
|
||
for idx in (cth, qs):
|
||
candidates = idx.get_candidate_polygons(lat, lon, return_all=True)
|
||
|
||
if candidates:
|
||
max_sim = 0.0
|
||
arg_max = None
|
||
|
||
normalized_qs_names = {}
|
||
|
||
for osm_name in osm_names:
|
||
|
||
contains_ideographs = any(((char_scripts[ord(c)] or '').lower() in ideographic_scripts
|
||
for c in safe_decode(osm_name)))
|
||
|
||
for i in candidates:
|
||
props = idx.get_properties(i)
|
||
name = normalized_qs_names.get(i)
|
||
if not name:
|
||
name = props.get('name')
|
||
if not name:
|
||
continue
|
||
for pattern, repl in cls.regex_replacements:
|
||
name = pattern.sub(repl, name)
|
||
normalized_qs_names[i] = name
|
||
|
||
if is_neighborhood and idx is qs and props.get(QuattroshapesReverseGeocoder.LEVEL) != 'neighborhood':
|
||
continue
|
||
|
||
if not contains_ideographs:
|
||
sim = NeighborhoodDeduper.compare(osm_name, name, idf)
|
||
else:
|
||
# Many Han/Hangul characters are common, shouldn't use IDF
|
||
sim = NeighborhoodDeduper.compare_ideographs(osm_name, name)
|
||
|
||
if sim > max_sim:
|
||
max_sim = sim
|
||
poly = idx.get_polygon(i)
|
||
arg_max = (max_sim, props, poly.context, idx, i)
|
||
|
||
if arg_max:
|
||
ranks.append(arg_max)
|
||
|
||
ranks.sort(key=operator.itemgetter(0), reverse=True)
|
||
if ranks and ranks[0][0] >= cls.DUPE_THRESHOLD:
|
||
score, props, poly, idx, i = ranks[0]
|
||
|
||
existing_osm_boundaries = osm_admin_rtree.point_in_poly(lat, lon, return_all=True)
|
||
|
||
skip_node = False
|
||
for poly_index, osm_props in enumerate(existing_osm_boundaries):
|
||
containing_component = None
|
||
name = osm_props.get('name')
|
||
# Only exact name matches here since we're comparins OSM to OSM
|
||
if name and name.lower() != attrs.get('name', '').lower():
|
||
continue
|
||
|
||
containing_ids = [(boundary['type'], boundary['id']) for boundary in existing_osm_boundaries[poly_index + 1:]]
|
||
|
||
containing_component = osm_address_components.component_from_properties(country, osm_props, containing=containing_ids)
|
||
|
||
if containing_component and containing_component != component_name and AddressFormatter.component_order[containing_component] <= AddressFormatter.component_order[AddressFormatter.CITY]:
|
||
skip_node = True
|
||
break
|
||
|
||
# Skip this element
|
||
if skip_node:
|
||
continue
|
||
|
||
containing_ids = [(boundary['type'], boundary['id']) for boundary in existing_osm_boundaries]
|
||
component = osm_address_components.component_from_properties(country, attrs, containing=containing_ids)
|
||
attrs['component'] = component
|
||
|
||
if idx is cth:
|
||
attrs['polygon_type'] = 'neighborhood'
|
||
source = 'osm_cth'
|
||
else:
|
||
level = props.get(QuattroshapesReverseGeocoder.LEVEL, None)
|
||
|
||
source = 'osm_quattro'
|
||
if level == 'neighborhood':
|
||
attrs['polygon_type'] = 'neighborhood'
|
||
else:
|
||
attrs['polygon_type'] = 'local_admin'
|
||
|
||
attrs['source'] = source
|
||
index.index_polygon(poly)
|
||
index.add_polygon(poly, attrs)
|
||
idx.matched[i] = True
|
||
|
||
num_polys += 1
|
||
if num_polys % 1000 == 0 and num_polys > 0:
|
||
logger.info('did {} neighborhoods'.format(num_polys))
|
||
|
||
for idx, source in ((cth, 'clickthathood'), (qs, 'quattroshapes')):
|
||
for i in xrange(idx.i):
|
||
props = idx.get_properties(i)
|
||
poly = idx.get_polygon(i)
|
||
if idx.matched[i]:
|
||
continue
|
||
props['source'] = source
|
||
if idx is cth or props.get(QuattroshapesReverseGeocoder.LEVEL, None) == 'neighborhood':
|
||
component = AddressFormatter.SUBURB
|
||
if source == 'quattroshapes':
|
||
name = props.get('name')
|
||
if not name:
|
||
continue
|
||
for pattern, repl in cls.regex_replacements:
|
||
name = pattern.sub(repl, name)
|
||
|
||
props['name'] = name
|
||
|
||
if cls.quattroshapes_city_district_regex.match(name):
|
||
component = AddressFormatter.CITY_DISTRICT
|
||
|
||
props['component'] = component
|
||
props['polygon_type'] = 'neighborhood'
|
||
else:
|
||
# We don't actually care about local admin polygons unless they match OSM
|
||
continue
|
||
index.index_polygon(poly.context)
|
||
index.add_polygon(poly.context, props)
|
||
|
||
return index
|
||
|
||
def setup(self):
|
||
self.priorities = []
|
||
|
||
def index_polygon_properties(self, properties):
|
||
self.priorities.append((self.level_priorities[properties['polygon_type']], self.source_priorities[properties['source']]))
|
||
|
||
def load_polygon_properties(self, d):
|
||
self.priorities = [tuple(p) for p in json.load(open(os.path.join(d, self.PRIORITIES_FILENAME)))]
|
||
|
||
def save_polygon_properties(self, d):
|
||
json.dump(self.priorities, open(os.path.join(d, self.PRIORITIES_FILENAME), 'w'))
|
||
|
||
def priority(self, i):
|
||
return self.priorities[i]
|
||
|
||
def get_candidate_polygons(self, lat, lon):
|
||
candidates = super(NeighborhoodReverseGeocoder, self).get_candidate_polygons(lat, lon)
|
||
return sorted(candidates, key=self.priority)
|
||
|
||
|
||
class QuattroshapesNeighborhoodsReverseGeocoder(GeohashPolygonIndex, QuattroshapesReverseGeocoder):
|
||
persistent_polygons = False
|
||
cache_size = None
|
||
|
||
@classmethod
|
||
def create_neighborhoods_index(cls, quattroshapes_dir,
|
||
output_dir,
|
||
index_filename=None,
|
||
polys_filename=DEFAULT_POLYS_FILENAME):
|
||
local_admin_filename = os.path.join(quattroshapes_dir, cls.LOCAL_ADMIN_FILENAME)
|
||
neighborhoods_filename = os.path.join(quattroshapes_dir, cls.NEIGHBORHOODS_FILENAME)
|
||
return cls.create_from_shapefiles([local_admin_filename, neighborhoods_filename],
|
||
output_dir, index_filename=index_filename,
|
||
polys_filename=polys_filename)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# Handle argument parsing here
|
||
parser = argparse.ArgumentParser()
|
||
|
||
parser.add_argument('-q', '--quattroshapes-dir',
|
||
help='Path to quattroshapes dir')
|
||
|
||
parser.add_argument('-a', '--osm-admin-rtree-dir',
|
||
help='Path to OSM admin rtree dir')
|
||
|
||
parser.add_argument('-c', '--country-rtree-dir',
|
||
help='Path to country rtree dir')
|
||
|
||
parser.add_argument('-n', '--osm-neighborhoods-file',
|
||
help='Path to OSM neighborhoods file (no dependencies, .osm format)')
|
||
|
||
parser.add_argument('-o', '--out-dir',
|
||
default=os.getcwd(),
|
||
help='Output directory')
|
||
|
||
logging.basicConfig(level=logging.INFO)
|
||
|
||
args = parser.parse_args()
|
||
if args.osm_neighborhoods_file and args.quattroshapes_dir and args.osm_admin_rtree_dir and args.country_rtree_dir:
|
||
index = NeighborhoodReverseGeocoder.create_from_osm_and_quattroshapes(
|
||
args.osm_neighborhoods_file,
|
||
args.quattroshapes_dir,
|
||
args.country_rtree_dir,
|
||
args.osm_admin_rtree_dir,
|
||
args.out_dir
|
||
)
|
||
else:
|
||
parser.error('Must specify quattroshapes dir or osm admin borders file')
|
||
|
||
index.save()
|