Files
libpostal/scripts/geodata/language_id/disambiguation.py
2015-11-22 18:08:45 -05:00

258 lines
10 KiB
Python

import os
import sys
from collections import defaultdict, OrderedDict
from marisa_trie import BytesTrie
this_dir = os.path.realpath(os.path.dirname(__file__))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir, os.pardir, 'python')))
from address_normalizer.text.normalize import PhraseFilter
from address_normalizer.text.tokenize import token_types
from geodata.encoding import safe_decode
from geodata.string_utils import wide_iter, wide_ord
from geodata.i18n.unicode_paths import DATA_DIR
from geodata.i18n.normalize import strip_accents
from geodata.i18n.unicode_properties import get_chars_by_script, get_script_languages
from postal.text.tokenize import tokenize
WELL_REPRESENTED_LANGUAGES = set(['en', 'fr', 'it', 'de', 'nl', 'es', 'pt'])
# For toponyms, we want to limit the countries we consider to those where
# we the place names can themselves be considered training examples of the language
WELL_REPRESENTED_LANGUAGE_COUNTRIES = {
'en': set(['gb', 'us', 'ca', 'au', 'nz', 'ie']),
'fr': set(['fr']),
'it': set(['it']),
'de': set(['de', 'at']),
'nl': set(['nl']),
'es': set(['es', 'ar', 'mx', 'cl', 'co', 'pe', 'ec', 'pr', 'uy',
've', 'cu', 'do', 'bo', 'gt', 'cr', 'py', 'sv', 'pa',
'ni', 'hn']),
'pt': set(['pt', 'br']),
}
DICTIONARIES_DIR = os.path.join(DATA_DIR, 'dictionaries')
PREFIX_KEY = u'\x02'
SUFFIX_KEY = u'\x03'
POSSIBLE_ROMAN_NUMERALS = set(['i', 'ii', 'iii', 'iv', 'v', 'vi', 'vii', 'viii', 'ix',
'x', 'xi', 'xii', 'xiii', 'xiv', 'xv', 'xvi', 'xvii', 'xviii', 'xix',
'xx', 'xxx', 'xl', 'l', 'lx', 'lxx', 'lxxx', 'xc',
'c', 'cc', 'ccc', 'cd', 'd', 'dc', 'dcc', 'dccc', 'cm',
'm', 'mm', 'mmm', 'mmmm'])
class DictionaryPhraseFilter(PhraseFilter):
def __init__(self, *dictionaries):
self.dictionaries = dictionaries
def serialize(self, s):
return s
def deserialize(self, s):
return s
def configure(self, base_dir=DICTIONARIES_DIR):
kvs = defaultdict(OrderedDict)
for lang in os.listdir(DICTIONARIES_DIR):
for filename in self.dictionaries:
is_suffix_dictionary = 'suffixes' in filename
is_prefix_dictionary = 'prefixes' in filename
is_street_types_dictionary = 'street_types' in filename
is_stopword_dictionary = 'stopwords' in filename
path = os.path.join(DICTIONARIES_DIR, lang, filename)
if not os.path.exists(path):
continue
for line in open(path):
line = line.strip()
if not line:
continue
phrases = safe_decode(line).split(u'|')
if not phrases:
continue
canonical = strip_accents(phrases[0])
for phrase in phrases:
if phrase in POSSIBLE_ROMAN_NUMERALS:
continue
is_canonical = strip_accents(phrase) == canonical
if is_suffix_dictionary:
phrase = SUFFIX_KEY + phrase[::-1]
elif is_prefix_dictionary:
phrase = PREFIX_KEY + phrase
if is_canonical or is_street_types_dictionary or is_prefix_dictionary or is_suffix_dictionary:
kvs[phrase][lang] = (is_canonical, is_stopword_dictionary)
kvs = [(k, '|'.join([v, str(int(c)), str(int(s))])) for k, vals in kvs.iteritems() for v, (c, s) in vals.iteritems()]
self.trie = BytesTrie(kvs)
self.configured = True
def search_substring(self, s):
if len(s) == 0:
return None, 0
for i in xrange(len(s) + 1):
if not self.trie.has_keys_with_prefix(s[:i]):
i -= 1
break
if i > 0:
return (self.trie.get(s[:i]), i)
else:
return None, 0
def search_suffix(self, token):
suffix_search, suffix_len = self.search_substring(SUFFIX_KEY + token[::-1])
if suffix_len > 0:
suffix_len -= len(SUFFIX_KEY)
return suffix_search, suffix_len
def search_prefix(self, token):
prefix_search, prefix_len = self.search_substring(PREFIX_KEY + token)
if prefix_len > 0:
prefix_len -= len(PREFIX_KEY)
return prefix_search, prefix_len
def basic_filter(self, tokens):
return super(DictionaryPhraseFilter, self).filter(tokens)
def filter(self, tokens):
for c, t, data in self.basic_filter(tokens):
if c != token_types.PHRASE:
token = t[1]
token_len = len(token)
suffix_search, suffix_len = self.search_suffix(token)
if suffix_search and self.trie.get(token[(token_len - suffix_len):].rstrip('.')):
yield (token_types.PHRASE, [(c,) + t], suffix_search)
continue
prefix_search, prefix_len = self.search_prefix(token)
if prefix_search and self.trie.get(token[:prefix_len]):
yield (token_types.PHRASE, [(c,) + t], prefix_search)
continue
yield c, t, data
street_types_gazetteer = DictionaryPhraseFilter('street_types.txt',
'directionals.txt',
'concatenated_suffixes_separable.txt',
'concatenated_suffixes_inseparable.txt',
'concatenated_prefixes_separable.txt',
'stopwords.txt',)
char_scripts = get_chars_by_script()
script_languages = {script: set(langs) for script, langs in get_script_languages().iteritems()}
UNKNOWN_SCRIPT = 'Unknown'
COMMON_SCRIPT = 'Common'
MAX_ASCII = 127
def get_string_script(s):
s = safe_decode(s)
str_len = len(s)
script = last_script = UNKNOWN_SCRIPT
is_ascii = True
script_len = 0
for c in wide_iter(s):
script = char_scripts[wide_ord(c)]
if script == COMMON_SCRIPT and last_script != UNKNOWN_SCRIPT:
script = last_script
if last_script != script and last_script != UNKNOWN_SCRIPT and last_script != COMMON_SCRIPT:
if (script_len < str_len):
for c in reversed(list(wide_iter(s[:script_len]))):
if char_scripts[wide_ord(c)] == COMMON_SCRIPT:
script_len -= 1
break
is_ascii = is_ascii and ord(c) <= MAX_ASCII
script_len += 1
if script != UNKNOWN_SCRIPT:
last_script = script
return (last_script, script_len, is_ascii)
LATIN_SCRIPT = 'Latin'
UNKNOWN_LANGUAGE = 'unk'
AMBIGUOUS_LANGUAGE = 'xxx'
def disambiguate_language(text, languages):
valid_languages = OrderedDict(languages)
script_langs = {}
read_len = 0
while read_len < len(text):
script, script_len, is_ascii = get_string_script(text[read_len:])
if script != LATIN_SCRIPT:
script_langs[script] = set([l for l, d in languages if l in script_languages.get(script, [])])
read_len += script_len
num_defaults = sum((1 for lang, default in valid_languages.iteritems() if default))
tokens = [(c, t.rstrip('.')) for t, c in tokenize(safe_decode(text).replace(u'-', u' ').lower())]
current_lang = None
possible_lang = None
seen_languages = set()
for c, t, data in street_types_gazetteer.filter(tokens):
if c == token_types.PHRASE:
valid = []
data = [d.split('|') for d in data]
potentials = [l for l, c, s in data if l in valid_languages]
for lang, canonical, stopword in data:
canonical = int(canonical)
stopword = int(stopword)
if lang not in valid_languages or (stopword and len(potentials) > 1):
continue
is_default = valid_languages[lang]
lang_valid = is_default or not seen_languages or lang in seen_languages
if lang_valid and ((canonical and not stopword) or (is_default and len(potentials) == 1)):
valid.append(lang)
elif is_default and num_defaults > 1 and current_lang is not None and current_lang != lang:
return AMBIGUOUS_LANGUAGE
elif stopword and canonical and not is_default and lang in seen_languages:
valid.append(lang)
elif not seen_languages and len(potentials) == 1 and len(t[0][1]) > 1:
possible_lang = lang if possible_lang is None or possible_lang == lang else None
if seen_languages and valid and not any((l in seen_languages for l in valid)) and \
(not any((valid_languages.get(l) for l in valid)) or any((valid_languages.get(l) for l in seen_languages))):
return AMBIGUOUS_LANGUAGE
if len(valid) == 1:
current_lang = valid[0]
else:
valid_default = [l for l in valid if valid_languages.get(l)]
if len(valid_default) == 1 and current_lang is not None and valid_default[0] != current_lang:
return AMBIGUOUS_LANGUAGE
elif len(valid_default) == 1:
current_lang = valid_default[0]
if any((current_lang not in langs for script, langs in script_langs.iteritems())):
return AMBIGUOUS_LANGUAGE
seen_languages.update(valid)
if current_lang is not None:
return current_lang
elif possible_lang is not None:
if not any((possible_lang not in langs for script, langs in script_langs.iteritems())):
return possible_lang
else:
return AMBIGUOUS_LANGUAGE
return UNKNOWN_LANGUAGE