Files
libpostal/src/language_classifier_train.c

928 lines
35 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <float.h>
#include "log/log.h"
#include "address_dictionary.h"
#include "cartesian_product.h"
#include "collections.h"
#include "language_classifier.h"
#include "language_classifier_io.h"
#include "logistic_regression.h"
#include "logistic_regression_trainer.h"
#include "shuffle.h"
#include "sparse_matrix.h"
#include "sparse_matrix_utils.h"
#include "stochastic_gradient_descent.h"
#include "transliterate.h"
#define LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD 3.0
#define LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD 100
#define LOG_BATCH_INTERVAL 10
#define COMPUTE_COST_INTERVAL 100
#define COMPUTE_CV_INTERVAL 1000
#define LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES 50
// Hyperparameters for stochastic gradient descent
static double GAMMA_SCHEDULE[] = {0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0};
static const size_t GAMMA_SCHEDULE_SIZE = sizeof(GAMMA_SCHEDULE) / sizeof(double);
#define DEFAULT_GAMMA_0 10.0
#define REGULARIZATION_SCHEDULE {0.0, 1e-7, 1e-6, 1e-5, 1e-4, 0.001, 0.01, 0.1, \
0.2, 0.5, 1.0, 2.0, 5.0, 10.0}
static double L2_SCHEDULE[] = REGULARIZATION_SCHEDULE;
static const size_t L2_SCHEDULE_SIZE = sizeof(L2_SCHEDULE) / sizeof(double);
static double L1_SCHEDULE[] = REGULARIZATION_SCHEDULE;
static const size_t L1_SCHEDULE_SIZE = sizeof(L1_SCHEDULE) / sizeof(double);
#define DEFAULT_L2 1e-6
#define DEFAULT_L1 1e-4
// Hyperparameters for FTRL-Proximal
static double ALPHA_SCHEDULE[] = {0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0};
static const size_t ALPHA_SCHEDULE_SIZE = sizeof(ALPHA_SCHEDULE) / sizeof(double);
static double DEFAULT_BETA = 1.0;
#define DEFAULT_ALPHA 10.0
#define TRAIN_EPOCHS 10
#define HYPERPARAMETER_EPOCHS 5
logistic_regression_trainer_t *language_classifier_init_params(char *filename, double feature_count_threshold, uint32_t label_count_threshold, size_t minibatch_size, logistic_regression_optimizer_type optim_type, regularization_type_t reg_type) {
if (filename == NULL) {
log_error("Filename was NULL\n");
return NULL;
}
language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename);
language_classifier_minibatch_t *minibatch;
khash_t(str_double) *feature_counts = kh_init(str_double);
khash_t(str_uint32) *label_counts = kh_init(str_uint32);
size_t num_batches = 0;
// Count features and labels
while ((minibatch = language_classifier_data_set_get_minibatch_with_size(data_set, NULL, minibatch_size)) != NULL) {
if (!count_labels_minibatch(label_counts, minibatch->labels)) {
log_error("Counting minibatch labeles failed\n");
exit(EXIT_FAILURE);
}
if (num_batches % LOG_BATCH_INTERVAL == 0 && num_batches > 0) {
log_info("Counting labels, did %zu examples\n", num_batches * minibatch_size);
}
num_batches++;
language_classifier_minibatch_destroy(minibatch);
}
log_info("Done counting labels\n");
language_classifier_data_set_destroy(data_set);
data_set = language_classifier_data_set_init(filename);
num_batches = 0;
khash_t(str_uint32) *label_ids = select_labels_threshold(label_counts, label_count_threshold);
if (label_ids == NULL) {
log_error("Error creating labels\n");
exit(EXIT_FAILURE);
}
size_t num_labels = kh_size(label_ids);
log_info("num_labels=%zu\n", num_labels);
// Don't free the label strings as the pointers are reused in select_labels_threshold
kh_destroy(str_uint32, label_counts);
// Run through the training set again, counting only features which co-occur with valid classes
while ((minibatch = language_classifier_data_set_get_minibatch(data_set, label_ids)) != NULL) {
if (!count_features_minibatch(feature_counts, minibatch->features, true)){
log_error("Counting minibatch features failed\n");
exit(EXIT_FAILURE);
}
if (num_batches % LOG_BATCH_INTERVAL == 0 && num_batches > 0) {
log_info("Counting features, did %zu examples\n", num_batches * minibatch_size);
}
num_batches++;
language_classifier_minibatch_destroy(minibatch);
}
log_info("Done counting features, finalizing\n");
language_classifier_data_set_destroy(data_set);
// Discard rare features using a count threshold (can be 1) and convert them to trie
trie_t *feature_ids = select_features_threshold(feature_counts, feature_count_threshold);
if (feature_ids == NULL) {
log_error("Error creating features trie\n");
exit(EXIT_FAILURE);
}
// Need to free the keys here as trie uses its own memory
const char *key;
kh_foreach_key(feature_counts, key, {
free((char *)key);
})
kh_destroy(str_double, feature_counts);
logistic_regression_trainer_t *trainer = NULL;
if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
bool fit_intercept = true;
double default_lambda = 0.0;
if (reg_type == REGULARIZATION_L2){
default_lambda = DEFAULT_L2;
} else if (reg_type == REGULARIZATION_L1) {
default_lambda = DEFAULT_L1;
}
trainer = logistic_regression_trainer_init_sgd(feature_ids, label_ids, fit_intercept, reg_type, default_lambda, DEFAULT_GAMMA_0);
} else if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
trainer = logistic_regression_trainer_init_ftrl(feature_ids, label_ids, DEFAULT_ALPHA, DEFAULT_BETA, DEFAULT_L1, DEFAULT_L2);
}
return trainer;
}
logistic_regression_trainer_t *language_classifier_init_optim_reg(char *filename, size_t minibatch_size, logistic_regression_optimizer_type optim_type, regularization_type_t reg_type) {
return language_classifier_init_params(filename, LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD, LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD, minibatch_size, optim_type, reg_type);
}
logistic_regression_trainer_t *language_classifier_init_sgd_reg(char *filename, size_t minibatch_size, regularization_type_t reg_type) {
return language_classifier_init_params(filename, LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD, LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD, minibatch_size, LOGISTIC_REGRESSION_OPTIMIZER_SGD, reg_type);
}
logistic_regression_trainer_t *language_classifier_init_ftrl(char *filename, size_t minibatch_size) {
return language_classifier_init_params(filename, LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD, LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD, minibatch_size, LOGISTIC_REGRESSION_OPTIMIZER_FTRL, REGULARIZATION_NONE);
}
double compute_cv_accuracy(logistic_regression_trainer_t *trainer, char *filename) {
language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename);
language_classifier_minibatch_t *minibatch;
uint32_t correct = 0;
uint32_t total = 0;
double_matrix_t *p_y = double_matrix_new_zeros(LANGUAGE_CLASSIFIER_DEFAULT_BATCH_SIZE, trainer->num_labels);
while ((minibatch = language_classifier_data_set_get_minibatch(data_set, trainer->label_ids)) != NULL) {
sparse_matrix_t *x = feature_matrix(trainer->feature_ids, minibatch->features);
uint32_array *y = label_vector(trainer->label_ids, minibatch->labels);
if (!double_matrix_resize_aligned(p_y, x->m, trainer->num_labels, 16)) {
log_error("resize p_y failed\n");
exit(EXIT_FAILURE);
}
double_matrix_zero(p_y);
if (!sparse_matrix_add_unique_columns_alias(x, trainer->unique_columns, trainer->batch_columns)) {
log_error("Error adding unique columns\n");
exit(EXIT_FAILURE);
}
double_matrix_t *theta = logistic_regression_trainer_get_weights(trainer);
if (!logistic_regression_model_expectation(theta, x, p_y)) {
log_error("Predict cv batch failed\n");
exit(EXIT_FAILURE);
}
double *row;
for (size_t i = 0; i < p_y->m; i++) {
row = double_matrix_get_row(p_y, i);
int64_t predicted = double_array_argmax(row, p_y->n);
if (predicted < 0) {
log_error("Error in argmax\n");
exit(EXIT_FAILURE);
}
uint32_t y_i = y->a[i];
if (y_i == (uint32_t)predicted) {
correct++;
}
total++;
}
sparse_matrix_destroy(x);
uint32_array_destroy(y);
language_classifier_minibatch_destroy(minibatch);
}
language_classifier_data_set_destroy(data_set);
double_matrix_destroy(p_y);
double accuracy = (double)correct / total;
return accuracy;
}
double compute_total_cost(logistic_regression_trainer_t *trainer, char *filename, ssize_t compute_batches) {
language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename);
language_classifier_minibatch_t *minibatch;
double total_cost = 0.0;
size_t num_batches = 0;
size_t num_examples = 0;
// Need to regularize the weights
double_matrix_t *theta = logistic_regression_trainer_get_regularized_weights(trainer);
while ((minibatch = language_classifier_data_set_get_minibatch(data_set, trainer->label_ids)) != NULL) {
double batch_cost = logistic_regression_trainer_minibatch_cost(trainer, minibatch->features, minibatch->labels);
total_cost += batch_cost;
num_examples += minibatch->features->n;
language_classifier_minibatch_destroy(minibatch);
num_batches++;
if (compute_batches > 0 && num_batches == (size_t)compute_batches) {
break;
}
}
double reg_cost = logistic_regression_trainer_regularization_cost(trainer, num_examples);
log_info("cost = %f, reg_cost = %f, m = %zu\n", total_cost, reg_cost, num_examples);
total_cost += reg_cost;
language_classifier_data_set_destroy(data_set);
return total_cost;
}
bool language_classifier_train_epoch(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, ssize_t train_batches, size_t minibatch_size) {
if (filename == NULL) {
log_error("Filename was NULL\n");
return false;
}
#if defined(HAVE_SHUF) || defined(HAVE_GSHUF)
log_info("Shuffling\n");
if (!shuffle_file_chunked_size(filename, DEFAULT_SHUFFLE_CHUNK_SIZE)) {
log_error("Error in shuffle\n");
logistic_regression_trainer_destroy(trainer);
return NULL;
}
log_info("Shuffle complete\n");
#endif
language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename);
language_classifier_minibatch_t *minibatch;
size_t num_batches = 0;
double batch_cost = 0.0;
double total_cost = 0.0;
double last_cost = 0.0;
double train_cost = 0.0;
double cv_accuracy = 0.0;
while ((minibatch = language_classifier_data_set_get_minibatch_with_size(data_set, trainer->label_ids, minibatch_size)) != NULL) {
bool compute_cost = num_batches % COMPUTE_COST_INTERVAL == 0;
bool compute_cv = num_batches % COMPUTE_CV_INTERVAL == 0 && num_batches > 0 && cv_filename != NULL;
if (num_batches % LOG_BATCH_INTERVAL == 0 && num_batches > 0) {
log_info("Epoch %u, doing %zu examples\n", trainer->epochs, num_batches * minibatch_size);
}
if (compute_cost) {
train_cost = logistic_regression_trainer_minibatch_cost_regularized(trainer, minibatch->features, minibatch->labels);
log_info("cost = %f\n", train_cost);
}
if (!logistic_regression_trainer_train_minibatch(trainer, minibatch->features, minibatch->labels)){
log_error("Train batch failed\n");
exit(EXIT_FAILURE);
}
if (compute_cv) {
cv_accuracy = compute_cv_accuracy(trainer, cv_filename);
log_info("cv accuracy=%f\n", cv_accuracy);
}
num_batches++;
if (train_batches > 0 && num_batches == (size_t)train_batches) {
log_info("Epoch %u, trained %zu examples\n", trainer->epochs, num_batches * minibatch_size);
train_cost = logistic_regression_trainer_minibatch_cost_regularized(trainer, minibatch->features, minibatch->labels);
log_info("cost = %f\n", train_cost);
break;
}
language_classifier_minibatch_destroy(minibatch);
}
language_classifier_data_set_destroy(data_set);
return true;
}
static double language_classifier_cv_cost(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, size_t minibatch_size, bool *diverged) {
ssize_t cost_batches;
char *cost_file;
if (cv_filename == NULL) {
cost_file = filename;
cost_batches = LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES;
} else {
cost_file = cv_filename;
cost_batches = -1;
}
double initial_cost = compute_total_cost(trainer, cost_file, cost_batches);
for (size_t k = 0; k < HYPERPARAMETER_EPOCHS; k++) {
trainer->epochs = k;
if (!language_classifier_train_epoch(trainer, filename, NULL, LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES, minibatch_size)) {
log_error("Error in epoch\n");
logistic_regression_trainer_destroy(trainer);
exit(EXIT_FAILURE);
}
}
double final_cost = compute_total_cost(trainer, cost_file, cost_batches);
*diverged = final_cost > initial_cost;
log_info("final_cost = %f, initial_cost = %f\n", final_cost, initial_cost);
return final_cost;
}
typedef struct language_classifier_sgd_params {
double lambda;
double gamma_0;
} language_classifier_sgd_params_t;
typedef struct language_classifier_ftrl_params {
double alpha;
double lambda1;
double lambda2;
} language_classifier_ftrl_params_t;
VECTOR_INIT(language_classifier_sgd_param_array, language_classifier_sgd_params_t)
VECTOR_INIT(language_classifier_ftrl_param_array, language_classifier_ftrl_params_t)
/* Uses the one standard-error rule (http://www.stat.cmu.edu/~ryantibs/datamining/lectures/19-val2.pdf)
A solution that's better regularized is preferred if it's within one standard error
of the solution with the lowest cross-validation error.
*/
language_classifier_sgd_params_t language_classifier_parameter_sweep_sgd(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, size_t minibatch_size) {
double best_cost = DBL_MAX;
double default_lambda = 0.0;
size_t lambda_schedule_size = 0;
double *lambda_schedule = NULL;
sgd_trainer_t *sgd = trainer->optimizer.sgd;
if (sgd->reg_type == REGULARIZATION_L2) {
default_lambda = DEFAULT_L2;
lambda_schedule_size = L2_SCHEDULE_SIZE;
lambda_schedule = L2_SCHEDULE;
} else if (sgd->reg_type == REGULARIZATION_L1) {
lambda_schedule_size = L1_SCHEDULE_SIZE;
lambda_schedule = L1_SCHEDULE;
default_lambda = DEFAULT_L1;
}
double_array *costs = double_array_new();
language_classifier_sgd_param_array *all_params = language_classifier_sgd_param_array_new();
language_classifier_sgd_params_t best_params = (language_classifier_sgd_params_t){default_lambda, DEFAULT_GAMMA_0};
double cost;
language_classifier_sgd_params_t params;
cartesian_product_iterator_t *iter = cartesian_product_iterator_new(2, lambda_schedule_size, GAMMA_SCHEDULE_SIZE);
for (uint32_t *vals = cartesian_product_iterator_start(iter); !cartesian_product_iterator_done(iter); vals = cartesian_product_iterator_next(iter)) {
double lambda = lambda_schedule[vals[0]];
double gamma_0 = GAMMA_SCHEDULE[vals[1]];
params.lambda = lambda,
params.gamma_0 = gamma_0;
if (!logistic_regression_trainer_reset_params_sgd(trainer, lambda, gamma_0)) {
log_error("Error resetting params\n");
logistic_regression_trainer_destroy(trainer);
exit(EXIT_FAILURE);
}
log_info("Optimizing hyperparameters. Trying lambda=%.7f, gamma_0=%f\n", lambda, gamma_0);
bool diverged = false;
cost = language_classifier_cv_cost(trainer, filename, cv_filename, minibatch_size, &diverged);
if (!diverged) {
language_classifier_sgd_param_array_push(all_params, params);
double_array_push(costs, cost);
} else {
log_info("Diverged, cost = %f\n", cost);
}
log_info("Total cost = %f\n", cost);
if (cost < best_cost) {
log_info("Better than current best parameters: setting lambda=%.7f, gamma_0=%f\n", lambda, gamma_0);
best_cost = cost;
best_params.lambda = lambda;
best_params.gamma_0 = gamma_0;
}
}
size_t num_params = costs->n;
if (num_params > 0) {
language_classifier_sgd_params_t *param_values = all_params->a;
double *cost_values = costs->a;
double std_error = double_array_std(cost_values, num_params) / sqrt((double)num_params);
double max_cost = best_cost + std_error;
log_info("max_cost = %f using the one standard error rule\n", max_cost);
for (size_t i = 0; i < num_params; i++) {
cost = cost_values[i];
params = param_values[i];
if (cost < max_cost && params.lambda > best_params.lambda) {
best_params = params;
log_info("cost (%f) < max_cost and better regularized, setting lambda=%.7f, gamma_0=%f\n", cost, params.lambda, params.gamma_0);
}
}
}
language_classifier_sgd_param_array_destroy(all_params);
double_array_destroy(costs);
return best_params;
}
language_classifier_ftrl_params_t language_classifier_parameter_sweep_ftrl(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, size_t minibatch_size) {
double best_cost = DBL_MAX;
language_classifier_ftrl_params_t best_params = (language_classifier_ftrl_params_t){DEFAULT_ALPHA, DEFAULT_L1, DEFAULT_L2};
double_array *costs = double_array_new();
language_classifier_ftrl_param_array *all_params = language_classifier_ftrl_param_array_new();
language_classifier_ftrl_params_t params;
double cost;
cartesian_product_iterator_t *iter = cartesian_product_iterator_new(3, L1_SCHEDULE_SIZE, L2_SCHEDULE_SIZE, ALPHA_SCHEDULE_SIZE);
for (uint32_t *vals = cartesian_product_iterator_start(iter); !cartesian_product_iterator_done(iter); vals = cartesian_product_iterator_next(iter)) {
double lambda1 = L1_SCHEDULE[vals[0]];
double lambda2 = L2_SCHEDULE[vals[1]];
double alpha = ALPHA_SCHEDULE[vals[2]];
params.lambda1 = lambda1,
params.lambda2 = lambda2,
params.alpha = alpha;
if (!logistic_regression_trainer_reset_params_ftrl(trainer, alpha, DEFAULT_BETA, lambda1, lambda2)) {
log_error("Error resetting params\n");
logistic_regression_trainer_destroy(trainer);
exit(EXIT_FAILURE);
}
log_info("Optimizing hyperparameters. Trying lambda1=%.7f, lambda2=%.7f, alpha=%f\n", lambda1, lambda2, alpha);
bool diverged = false;
cost = language_classifier_cv_cost(trainer, filename, cv_filename, minibatch_size, &diverged);
if (!diverged) {
language_classifier_ftrl_param_array_push(all_params, params);
double_array_push(costs, cost);
} else {
log_info("Diverged, cost = %f\n", cost);
}
log_info("Total cost = %f\n", cost);
if (cost < best_cost) {
log_info("Better than current best parameters: setting lambda1=%.7f, lambda2=%.7f, alpha=%f\n", lambda1, lambda2, alpha);
best_cost = cost;
best_params.lambda1 = lambda1;
best_params.lambda2 = lambda2;
best_params.alpha = alpha;
}
}
size_t num_params = costs->n;
if (num_params > 0) {
language_classifier_ftrl_params_t *param_values = all_params->a;
double *cost_values = costs->a;
double std_error = double_array_std(cost_values, num_params) / sqrt((double)num_params);
double max_cost = best_cost + std_error;
log_info("best_cost = %f, std_error = %f, max_cost = %f using the one standard error rule\n", best_cost, std_error, max_cost);
for (size_t i = 0; i < num_params; i++) {
cost = cost_values[i];
params = param_values[i];
log_info("cost = %f, lambda1 = %f, lambda2 = %f, alpha = %f\n", cost, params.lambda1, params.lambda2, params.alpha);
if (cost < max_cost &&
(params.lambda1 > best_params.lambda1 || double_equals(params.lambda1, best_params.lambda1)) &&
(params.lambda2 > best_params.lambda2 || double_equals(params.lambda2, best_params.lambda2))
) {
if (double_equals(params.lambda1, best_params.lambda1) && double_equals(params.lambda2, best_params.lambda2) && params.alpha > best_params.alpha) {
log_info("cost < max_cost but higher alpha\n");
continue;
}
best_params = params;
log_info("cost (%f) < max_cost and better regularized, setting lambda1=%.7f, lambda2=%.7f alpha=%f\n", cost, params.lambda1, params.lambda2, params.alpha);
}
}
}
language_classifier_ftrl_param_array_destroy(all_params);
double_array_destroy(costs);
return best_params;
}
static language_classifier_t *trainer_finalize(logistic_regression_trainer_t *trainer, char *test_filename) {
if (trainer == NULL) return NULL;
log_info("Done training\n");
if (test_filename != NULL) {
double test_accuracy = compute_cv_accuracy(trainer, test_filename);
log_info("Test accuracy = %f\n", test_accuracy);
}
language_classifier_t *classifier = language_classifier_new();
if (classifier == NULL) {
log_error("Error creating classifier\n");
logistic_regression_trainer_destroy(trainer);
return NULL;
}
// Reassign weights and features to the classifier model
// final_weights
if (trainer->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
sgd_trainer_t *sgd_trainer = trainer->optimizer.sgd;
if (sgd_trainer->reg_type == REGULARIZATION_L2 || sgd_trainer->reg_type == REGULARIZATION_NONE) {
double_matrix_t *weights = logistic_regression_trainer_final_weights(trainer);
classifier->weights_type = MATRIX_DENSE;
classifier->weights.dense = weights;
} else if (sgd_trainer->reg_type == REGULARIZATION_L1) {
sparse_matrix_t *sparse_weights = logistic_regression_trainer_final_weights_sparse(trainer);
classifier->weights_type = MATRIX_SPARSE;
classifier->weights.sparse = sparse_weights;
log_info("Weights sparse: %zu rows (m=%u), %" PRIu32 " cols, %zu elements\n", sparse_weights->indptr->n, sparse_weights->m, sparse_weights->n, sparse_weights->data->n);
}
} else if (trainer->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
sparse_matrix_t *sparse_weights = logistic_regression_trainer_final_weights_sparse(trainer);
classifier->weights_type = MATRIX_SPARSE;
classifier->weights.sparse = sparse_weights;
log_info("Weights sparse: %zu rows (m=%u), %" PRIu32 " cols, %zu elements\n", sparse_weights->indptr->n, sparse_weights->m, sparse_weights->n, sparse_weights->data->n);
}
classifier->num_features = trainer->num_features;
classifier->features = trainer->feature_ids;
// Set trainer feature_ids to NULL so it doesn't get destroyed
trainer->feature_ids = NULL;
size_t num_labels = trainer->num_labels;
classifier->num_labels = num_labels;
char **strings = malloc(sizeof(char *) * num_labels);
const char *label;
uint32_t label_id;
kh_foreach(trainer->label_ids, label, label_id, {
if (label_id >= num_labels) {
log_error("label_id %d >= num_labels %zu\n", label_id, num_labels);
exit(EXIT_FAILURE);
}
strings[label_id] = (char *)label;
})
classifier->labels = cstring_array_from_strings(strings, num_labels);
for (size_t i = 0; i < num_labels; i++) {
free(strings[i]);
}
free(strings);
logistic_regression_trainer_destroy(trainer);
return classifier;
}
language_classifier_t *language_classifier_train_sgd(char *filename, char *subset_filename, bool cross_validation_set, char *cv_filename, char *test_filename, uint32_t num_iterations, size_t minibatch_size, regularization_type_t reg_type) {
logistic_regression_trainer_t *trainer = language_classifier_init_sgd_reg(filename, minibatch_size, reg_type);
language_classifier_sgd_params_t params = language_classifier_parameter_sweep_sgd(trainer, subset_filename, cv_filename, minibatch_size);
log_info("Best params: lambda=%f, gamma_0=%f\n", params.lambda, params.gamma_0);
if (!logistic_regression_trainer_reset_params_sgd(trainer, params.lambda, params.gamma_0)) {
logistic_regression_trainer_destroy(trainer);
return NULL;
}
/* If there's not a distinct cross-validation set, e.g.
when training the production model, then the cross validation
file is just a subset of the training data and only used
for setting the hyperparameters, so ignore it after we're
done with the parameter sweep.
*/
if (!cross_validation_set) {
cv_filename = NULL;
}
for (uint32_t epoch = 0; epoch < num_iterations; epoch++) {
log_info("Doing epoch %d\n", epoch);
trainer->epochs = epoch;
if (!language_classifier_train_epoch(trainer, filename, cv_filename, -1, minibatch_size)) {
log_error("Error in epoch\n");
logistic_regression_trainer_destroy(trainer);
return NULL;
}
}
return trainer_finalize(trainer, test_filename);
}
language_classifier_t *language_classifier_train_ftrl(char *filename, char *subset_filename, bool cross_validation_set, char *cv_filename, char *test_filename, uint32_t num_iterations, size_t minibatch_size) {
logistic_regression_trainer_t *trainer = language_classifier_init_ftrl(filename, minibatch_size);
language_classifier_ftrl_params_t params = language_classifier_parameter_sweep_ftrl(trainer, subset_filename, cv_filename, minibatch_size);
log_info("Best params: lambda1=%.7f, lambda2=%.7f, alpha=%f\n", params.lambda1, params.lambda2, params.alpha);
if (!logistic_regression_trainer_reset_params_ftrl(trainer, params.alpha, DEFAULT_BETA, params.lambda1, params.lambda2)) {
logistic_regression_trainer_destroy(trainer);
return NULL;
}
/* If there's not a distinct cross-validation set, e.g.
when training the production model, then the cross validation
file is just a subset of the training data and only used
for setting the hyperparameters, so ignore it after we're
done with the parameter sweep.
*/
if (!cross_validation_set) {
cv_filename = NULL;
}
for (uint32_t epoch = 0; epoch < num_iterations; epoch++) {
log_info("Doing epoch %d\n", epoch);
trainer->epochs = epoch;
if (!language_classifier_train_epoch(trainer, filename, cv_filename, -1, minibatch_size)) {
log_error("Error in epoch\n");
logistic_regression_trainer_destroy(trainer);
return NULL;
}
}
return trainer_finalize(trainer, test_filename);
}
typedef enum {
LANGUAGE_CLASSIFIER_TRAIN_POSITIONAL_ARG,
LANGUAGE_CLASSIFIER_TRAIN_ARG_ITERATIONS,
LANGUAGE_CLASSIFIER_TRAIN_ARG_OPTIMIZER,
LANGUAGE_CLASSIFIER_TRAIN_ARG_REGULARIZATION,
LANGUAGE_CLASSIFIER_TRAIN_ARG_MINIBATCH_SIZE
} language_classifier_train_keyword_arg_t;
#define LANGUAGE_CLASSIFIER_TRAIN_USAGE "Usage: ./language_classifier_train [train|cv] filename [cv_filename] [test_filename] [output_dir] [--iterations number --opt (sgd|ftrl) --reg (l1|l2) --minibatch-size number]\n"
int main(int argc, char **argv) {
if (argc < 3) {
printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE);
exit(EXIT_FAILURE);
}
int pos_args = 1;
language_classifier_train_keyword_arg_t kwarg = LANGUAGE_CLASSIFIER_TRAIN_POSITIONAL_ARG;
size_t num_epochs = TRAIN_EPOCHS;
size_t minibatch_size = LANGUAGE_CLASSIFIER_DEFAULT_BATCH_SIZE;
logistic_regression_optimizer_type optim_type = LOGISTIC_REGRESSION_OPTIMIZER_SGD;
regularization_type_t reg_type = REGULARIZATION_L2;
size_t position = 0;
ssize_t arg_iterations;
ssize_t arg_minibatch_size;
char *command = NULL;
char *filename = NULL;
char *cv_filename = NULL;
char *test_filename = NULL;
bool cross_validation_set = false;
char *output_dir = LIBPOSTAL_LANGUAGE_CLASSIFIER_DIR;
for (int i = pos_args; i < argc; i++) {
char *arg = argv[i];
if (string_equals(arg, "--iterations")) {
kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_ITERATIONS;
continue;
}
if (string_equals(arg, "--opt")) {
kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_OPTIMIZER;
continue;
}
if (string_equals(arg, "--reg")) {
kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_REGULARIZATION;
continue;
}
if (string_equals(arg, "--minibatch-size")) {
kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_MINIBATCH_SIZE;
continue;
}
if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_ITERATIONS) {
if (sscanf(arg, "%zd", &arg_iterations) != 1 || arg_iterations < 0) {
log_error("Bad arg for --iterations: %s\n", arg);
exit(EXIT_FAILURE);
}
num_epochs = (size_t)arg_iterations;
} else if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_OPTIMIZER) {
if (string_equals(arg, "sgd")) {
optim_type = LOGISTIC_REGRESSION_OPTIMIZER_SGD;
} else if (string_equals(arg, "ftrl")) {
log_info("ftrl\n");
optim_type = LOGISTIC_REGRESSION_OPTIMIZER_FTRL;
} else {
log_error("Bad arg for --opt: %s\n", arg);
exit(EXIT_FAILURE);
}
} else if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_REGULARIZATION) {
if (string_equals(arg, "l2")) {
reg_type = REGULARIZATION_L2;
} else if (string_equals(arg, "l1")) {
reg_type = REGULARIZATION_L1;
} else {
log_error("Bad arg for --reg: %s\n", arg);
exit(EXIT_FAILURE);
}
} else if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_MINIBATCH_SIZE) {
if (sscanf(arg, "%zd", &arg_minibatch_size) != 1 || arg_minibatch_size < 0) {
log_error("Bad arg for --batch: %s\n", arg);
exit(EXIT_FAILURE);
}
minibatch_size = (size_t)arg_minibatch_size;
} else if (position == 0) {
command = arg;
if (string_equals(command, "cv")) {
cross_validation_set = true;
} else if (!string_equals(command, "train")) {
printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE);
exit(EXIT_FAILURE);
}
position++;
} else if (position == 1) {
filename = arg;
position++;
} else if (position == 2 && cross_validation_set) {
cv_filename = arg;
position++;
} else if (position == 2 && !cross_validation_set) {
output_dir = arg;
position++;
} else if (position == 3 && cross_validation_set) {
test_filename = arg;
position++;
} else if (position == 4 && cross_validation_set) {
output_dir = arg;
position++;
}
kwarg = LANGUAGE_CLASSIFIER_TRAIN_POSITIONAL_ARG;
}
if ((command == NULL || filename == NULL) || (cross_validation_set && (cv_filename == NULL || test_filename == NULL))) {
printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE);
exit(EXIT_FAILURE);
}
#if !defined(HAVE_SHUF) && !defined(HAVE_GSHUF)
log_warn("shuf must be installed to train address parser effectively. If this is a production machine, please install shuf. No shuffling will be performed.\n");
#endif
if (!address_dictionary_module_setup(NULL)) {
log_error("Could not load address dictionaries\n");
exit(EXIT_FAILURE);
} else if (!transliteration_module_setup(NULL)) {
log_error("Could not load transliteration module\n");
exit(EXIT_FAILURE);
}
char_array *temp_file = char_array_new();
char_array_cat_printf(temp_file, "%s.tmp", filename);
char *temp_filename = char_array_get_string(temp_file);
char_array *head_command = char_array_new();
size_t subset_examples = LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES * LANGUAGE_CLASSIFIER_DEFAULT_BATCH_SIZE;
char_array_cat_printf(head_command, "head -n %d %s > %s", subset_examples, filename, temp_filename);
int ret = system(char_array_get_string(head_command));
if (ret != 0) {
exit(EXIT_FAILURE);
}
char_array *temp_cv_file = NULL;
if (!cross_validation_set) {
char_array_clear(head_command);
temp_cv_file = char_array_new();
char_array_cat_printf(temp_cv_file, "%s.cv.tmp", filename);
char *temp_cv_filename = char_array_get_string(temp_cv_file);
char_array_cat_printf(head_command, "head -n %d %s | tail -n %d > %s", subset_examples * 2, filename, subset_examples, temp_cv_filename);
int ret = system(char_array_get_string(head_command));
cv_filename = temp_cv_filename;
}
if (ret != 0) {
exit(EXIT_FAILURE);
}
char_array_destroy(head_command);
language_classifier_t *language_classifier = NULL;
if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) {
language_classifier = language_classifier_train_sgd(filename, temp_filename, cross_validation_set, cv_filename, test_filename, num_epochs, minibatch_size, reg_type);
} else if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) {
language_classifier = language_classifier_train_ftrl(filename, temp_filename, cross_validation_set, cv_filename, test_filename, num_epochs, minibatch_size);
}
remove(temp_filename);
char_array_destroy(temp_file);
if (temp_cv_file != NULL) {
char_array_destroy(temp_cv_file);
}
log_info("Done with classifier\n");
char_array *path = char_array_new_size(strlen(output_dir) + PATH_SEPARATOR_LEN + strlen(LANGUAGE_CLASSIFIER_FILENAME));
char *classifier_path;
if (language_classifier != NULL) {
char_array_cat_joined(path, PATH_SEPARATOR, true, 2, output_dir, LANGUAGE_CLASSIFIER_FILENAME);
classifier_path = char_array_get_string(path);
language_classifier_save(language_classifier, classifier_path);
language_classifier_destroy(language_classifier);
}
char_array_destroy(path);
log_info("Success!\n");
address_dictionary_module_teardown();
}