529 lines
20 KiB
Python
529 lines
20 KiB
Python
# -*- coding: utf-8 -*-
|
|
'''
|
|
osm_address_training_data.py
|
|
----------------------------
|
|
|
|
This script generates several training sets from OpenStreetMap addresses,
|
|
streets, venues and toponyms.
|
|
|
|
Note: the combined size of all the files created by this script exceeds 100GB
|
|
so if training these models, it is wise to use a server-grade machine with
|
|
plenty of disk space. The following commands can be used in parallel to create
|
|
all the training sets:
|
|
|
|
Ways:
|
|
python osm_address_training_data.py -s $(OSM_DIR)/planet-ways.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
|
|
|
|
Venues:
|
|
python osm_address_training_data.py -v $(OSM_DIR)/planet-venues.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
|
|
|
|
Limited formatted addresses:
|
|
python osm_address_training_data.py -a -l $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) -o $(OUT_DIR)
|
|
|
|
Formatted addresses (tagged):
|
|
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm -f --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --quattroshapes-rtree-dir=$(QS_TREE_DIR) --geonames-db=$(GEONAMES_DB_PATH) -o $(OUT_DIR)
|
|
|
|
Formatted addresses (untagged):
|
|
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm -f -u --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --quattroshapes-rtree-dir=$(QS_TREE_DIR) --geonames-db=$(GEONAMES_DB_PATH) -o $(OUT_DIR)
|
|
|
|
Toponyms:
|
|
python osm_address_training_data.py -b $(OSM_DIR)/planet-borders.osm --language-rtree-dir=$(LANG_RTREE_DIR) -o $(OUT_DIR)
|
|
'''
|
|
|
|
import argparse
|
|
import csv
|
|
import os
|
|
import operator
|
|
import random
|
|
import re
|
|
import sys
|
|
import tempfile
|
|
import urllib
|
|
import ujson as json
|
|
import HTMLParser
|
|
|
|
from collections import defaultdict, OrderedDict
|
|
from lxml import etree
|
|
from itertools import ifilter, chain, combinations
|
|
|
|
this_dir = os.path.realpath(os.path.dirname(__file__))
|
|
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
|
|
|
|
from geodata.address_expansions.abbreviations import abbreviate
|
|
from geodata.address_expansions.gazetteers import *
|
|
from geodata.coordinates.conversion import *
|
|
from geodata.countries.country_names import *
|
|
from geodata.geonames.db import GeoNamesDB
|
|
from geodata.language_id.disambiguation import *
|
|
from geodata.language_id.sample import sample_random_language
|
|
from geodata.states.state_abbreviations import STATE_ABBREVIATIONS, STATE_EXPANSIONS
|
|
from geodata.i18n.languages import *
|
|
from geodata.address_formatting.formatter import AddressFormatter
|
|
from geodata.names.normalization import replace_name_prefixes, replace_name_suffixes
|
|
from geodata.neighborhoods.reverse_geocode import NeighborhoodReverseGeocoder
|
|
from geodata.osm.extract import *
|
|
from geodata.osm.formatter import OSMAddressFormatter
|
|
from geodata.polygons.language_polys import *
|
|
from geodata.polygons.reverse_geocode import *
|
|
from geodata.i18n.unicode_paths import DATA_DIR
|
|
|
|
from geodata.csv_utils import *
|
|
from geodata.file_utils import *
|
|
|
|
# Input files
|
|
PLANET_ADDRESSES_INPUT_FILE = 'planet-addresses.osm'
|
|
PLANET_WAYS_INPUT_FILE = 'planet-ways.osm'
|
|
PLANET_VENUES_INPUT_FILE = 'planet-venues.osm'
|
|
PLANET_BORDERS_INPUT_FILE = 'planet-borders.osm'
|
|
|
|
# Output files
|
|
WAYS_LANGUAGE_DATA_FILENAME = 'streets_by_language.tsv'
|
|
ADDRESS_LANGUAGE_DATA_FILENAME = 'address_streets_by_language.tsv'
|
|
ADDRESS_FORMAT_DATA_TAGGED_FILENAME = 'formatted_addresses_tagged.tsv'
|
|
ADDRESS_FORMAT_DATA_FILENAME = 'formatted_addresses.tsv'
|
|
ADDRESS_FORMAT_DATA_LANGUAGE_FILENAME = 'formatted_addresses_by_language.tsv'
|
|
TOPONYM_LANGUAGE_DATA_FILENAME = 'toponyms_by_language.tsv'
|
|
|
|
|
|
def normalize_osm_name_tag(tag, script=False):
|
|
norm = tag.rsplit(':', 1)[-1]
|
|
if not script:
|
|
return norm
|
|
return norm.split('_', 1)[0]
|
|
|
|
|
|
def get_language_names(language_rtree, key, value, tag_prefix='name'):
|
|
if not ('lat' in value and 'lon' in value):
|
|
return None, None
|
|
|
|
has_colon = ':' in tag_prefix
|
|
tag_first_component = tag_prefix.split(':')[0]
|
|
tag_last_component = tag_prefix.split(':')[-1]
|
|
|
|
try:
|
|
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
|
|
except Exception:
|
|
return None, None
|
|
|
|
country, candidate_languages, language_props = language_rtree.country_and_languages(latitude, longitude)
|
|
if not (country and candidate_languages):
|
|
return None, None
|
|
|
|
num_langs = len(candidate_languages)
|
|
default_langs = set([l['lang'] for l in candidate_languages if l.get('default')])
|
|
num_defaults = len(default_langs)
|
|
name_language = defaultdict(list)
|
|
|
|
alternate_langs = []
|
|
|
|
equivalent_alternatives = defaultdict(list)
|
|
for k, v in value.iteritems():
|
|
if k.startswith(tag_prefix + ':') and normalize_osm_name_tag(k, script=True) in languages:
|
|
lang = k.rsplit(':', 1)[-1]
|
|
alternate_langs.append((lang, v))
|
|
equivalent_alternatives[v].append(lang)
|
|
|
|
has_alternate_names = len(alternate_langs)
|
|
# Some countries like Lebanon list things like name:en == name:fr == "Rue Abdel Hamid Karame"
|
|
# Those addresses should be disambiguated rather than taken for granted
|
|
ambiguous_alternatives = set([k for k, v in equivalent_alternatives.iteritems() if len(v) > 1])
|
|
|
|
regional_defaults = 0
|
|
country_defaults = 0
|
|
regional_langs = set()
|
|
country_langs = set()
|
|
for p in language_props:
|
|
if p['admin_level'] > 0:
|
|
regional_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
|
|
regional_langs |= set([l['lang'] for l in p['languages']])
|
|
else:
|
|
country_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
|
|
country_langs |= set([l['lang'] for l in p['languages']])
|
|
|
|
ambiguous_already_seen = set()
|
|
|
|
for k, v in value.iteritems():
|
|
if k.startswith(tag_prefix + ':'):
|
|
if v not in ambiguous_alternatives:
|
|
norm = normalize_osm_name_tag(k)
|
|
norm_sans_script = normalize_osm_name_tag(k, script=True)
|
|
if norm in languages or norm_sans_script in languages:
|
|
name_language[norm].append(v)
|
|
elif v not in ambiguous_already_seen:
|
|
langs = [(lang, lang in default_langs) for lang in equivalent_alternatives[v]]
|
|
lang = disambiguate_language(v, langs)
|
|
|
|
if lang != AMBIGUOUS_LANGUAGE and lang != UNKNOWN_LANGUAGE:
|
|
name_language[lang].append(v)
|
|
|
|
ambiguous_already_seen.add(v)
|
|
elif not has_alternate_names and k.startswith(tag_first_component) and (has_colon or ':' not in k) and normalize_osm_name_tag(k, script=True) == tag_last_component:
|
|
if num_langs == 1:
|
|
name_language[candidate_languages[0]['lang']].append(v)
|
|
else:
|
|
lang = disambiguate_language(v, [(l['lang'], l['default']) for l in candidate_languages])
|
|
default_lang = candidate_languages[0]['lang']
|
|
|
|
if lang == AMBIGUOUS_LANGUAGE:
|
|
return None, None
|
|
elif lang == UNKNOWN_LANGUAGE and num_defaults == 1:
|
|
name_language[default_lang].append(v)
|
|
elif lang != UNKNOWN_LANGUAGE:
|
|
if lang != default_lang and lang in country_langs and country_defaults > 1 and regional_defaults > 0 and lang in WELL_REPRESENTED_LANGUAGES:
|
|
return None, None
|
|
name_language[lang].append(v)
|
|
else:
|
|
return None, None
|
|
|
|
return country, name_language
|
|
|
|
|
|
ALL_LANGUAGES = 'all'
|
|
|
|
|
|
def build_ways_training_data(language_rtree, infile, out_dir, abbreviate_streets=True):
|
|
'''
|
|
Creates a training set for language classification using most OSM ways
|
|
(streets) under a fairly lengthy osmfilter definition which attempts to
|
|
identify all roads/ways designated for motor vehicle traffic, which
|
|
is more-or-less what we'd expect to see in addresses.
|
|
|
|
The fields are {language, country, street name}. Example:
|
|
|
|
ar ma ﺵﺍﺮﻋ ﻑﺎﻟ ﻮﻟﺩ ﻊﻤﻳﺭ
|
|
'''
|
|
i = 0
|
|
f = open(os.path.join(out_dir, WAYS_LANGUAGE_DATA_FILENAME), 'w')
|
|
writer = csv.writer(f, 'tsv_no_quote')
|
|
|
|
for key, value, deps in parse_osm(infile, allowed_types=WAYS_RELATIONS):
|
|
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
|
|
if not name_language:
|
|
continue
|
|
|
|
for lang, val in name_language.iteritems():
|
|
for v in val:
|
|
for s in v.split(';'):
|
|
if lang in languages:
|
|
writer.writerow((lang, country, tsv_string(s)))
|
|
if not abbreviate_streets:
|
|
continue
|
|
abbrev = abbreviate(street_and_synonyms_gazetteer, s, lang)
|
|
if abbrev != s:
|
|
writer.writerow((lang, country, tsv_string(abbrev)))
|
|
if i % 1000 == 0 and i > 0:
|
|
print('did {} ways'.format(i))
|
|
i += 1
|
|
f.close()
|
|
|
|
|
|
NAME_KEYS = (
|
|
'name',
|
|
'addr:housename',
|
|
)
|
|
|
|
HOUSE_NUMBER_KEYS = (
|
|
'addr:house_number',
|
|
'addr:housenumber',
|
|
'house_number'
|
|
)
|
|
|
|
COUNTRY_KEYS = (
|
|
'country',
|
|
'country_name',
|
|
'addr:country',
|
|
'is_in:country',
|
|
'addr:country_code',
|
|
'country_code',
|
|
'is_in:country_code'
|
|
)
|
|
|
|
POSTAL_KEYS = (
|
|
'postcode',
|
|
'postal_code',
|
|
'addr:postcode',
|
|
'addr:postal_code',
|
|
)
|
|
|
|
|
|
def build_toponym_training_data(language_rtree, infile, out_dir):
|
|
'''
|
|
Data set of toponyms by language and country which should assist
|
|
in language classification. OSM tends to use the native language
|
|
by default (e.g. Москва instead of Moscow). Toponyms get messy
|
|
due to factors like colonialism, historical names, name borrowing
|
|
and the shortness of the names generally. In these cases
|
|
we're more strict as to what constitutes a valid language for a
|
|
given country.
|
|
|
|
Example:
|
|
ja jp 東京都
|
|
'''
|
|
i = 0
|
|
f = open(os.path.join(out_dir, TOPONYM_LANGUAGE_DATA_FILENAME), 'w')
|
|
writer = csv.writer(f, 'tsv_no_quote')
|
|
|
|
for key, value, deps in parse_osm(infile):
|
|
if not any((k.startswith('name') for k, v in value.iteritems())):
|
|
continue
|
|
|
|
try:
|
|
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
|
|
except Exception:
|
|
continue
|
|
|
|
country, candidate_languages, language_props = language_rtree.country_and_languages(latitude, longitude)
|
|
if not (country and candidate_languages):
|
|
continue
|
|
|
|
name_language = defaultdict(list)
|
|
|
|
official = official_languages[country]
|
|
|
|
default_langs = set([l for l, default in official.iteritems() if default])
|
|
|
|
regional_langs = list(chain(*(p['languages'] for p in language_props if p.get('admin_level', 0) > 0)))
|
|
|
|
top_lang = None
|
|
if len(official) > 0:
|
|
top_lang = official.iterkeys().next()
|
|
|
|
# E.g. Hindi in India, Urdu in Pakistan
|
|
if top_lang is not None and top_lang not in WELL_REPRESENTED_LANGUAGES and len(default_langs) > 1:
|
|
default_langs -= WELL_REPRESENTED_LANGUAGES
|
|
|
|
valid_languages = set([l['lang'] for l in candidate_languages])
|
|
|
|
'''
|
|
WELL_REPRESENTED_LANGUAGES are languages like English, French, etc. for which we have a lot of data
|
|
WELL_REPRESENTED_LANGUAGE_COUNTRIES are more-or-less the "origin" countries for said languages where
|
|
we can take the place names as examples of the language itself (e.g. place names in France are examples
|
|
of French, whereas place names in much of Francophone Africa tend to get their names from languages
|
|
other than French, even though French is the official language.
|
|
'''
|
|
valid_languages -= set([lang for lang in valid_languages if lang in WELL_REPRESENTED_LANGUAGES and country not in WELL_REPRESENTED_LANGUAGE_COUNTRIES[lang]])
|
|
|
|
valid_languages |= default_langs
|
|
|
|
if not valid_languages:
|
|
continue
|
|
|
|
have_qualified_names = False
|
|
|
|
for k, v in value.iteritems():
|
|
if not k.startswith('name:'):
|
|
continue
|
|
|
|
norm = normalize_osm_name_tag(k)
|
|
norm_sans_script = normalize_osm_name_tag(k, script=True)
|
|
|
|
if norm in languages:
|
|
lang = norm
|
|
elif norm_sans_script in languages:
|
|
lang = norm_sans_script
|
|
else:
|
|
continue
|
|
|
|
if lang in valid_languages:
|
|
have_qualified_names = True
|
|
name_language[lang].append(v)
|
|
|
|
if not have_qualified_names and len(regional_langs) <= 1 and 'name' in value and len(valid_languages) == 1:
|
|
name_language[top_lang].append(value['name'])
|
|
|
|
for k, v in name_language.iteritems():
|
|
for s in v:
|
|
s = s.strip()
|
|
if not s:
|
|
continue
|
|
writer.writerow((k, country, tsv_string(s)))
|
|
if i % 1000 == 0 and i > 0:
|
|
print('did {} toponyms'.format(i))
|
|
i += 1
|
|
|
|
f.close()
|
|
|
|
|
|
def build_address_training_data(langauge_rtree, infile, out_dir, format=False):
|
|
'''
|
|
Creates training set similar to the ways data but using addr:street tags instead.
|
|
These may be slightly closer to what we'd see in real live addresses, containing
|
|
variations, some abbreviations (although this is discouraged in OSM), etc.
|
|
|
|
Example record:
|
|
eu es Errebal kalea
|
|
'''
|
|
i = 0
|
|
f = open(os.path.join(out_dir, ADDRESS_LANGUAGE_DATA_FILENAME), 'w')
|
|
writer = csv.writer(f, 'tsv_no_quote')
|
|
|
|
for key, value, deps in parse_osm(infile):
|
|
country, street_language = get_language_names(language_rtree, key, value, tag_prefix='addr:street')
|
|
if not street_language:
|
|
continue
|
|
|
|
for k, v in street_language.iteritems():
|
|
for s in v:
|
|
s = s.strip()
|
|
if not s:
|
|
continue
|
|
if k in languages:
|
|
writer.writerow((k, country, tsv_string(s)))
|
|
if i % 1000 == 0 and i > 0:
|
|
print('did {} streets'.format(i))
|
|
i += 1
|
|
|
|
f.close()
|
|
|
|
VENUE_LANGUAGE_DATA_FILENAME = 'names_by_language.tsv'
|
|
|
|
|
|
def build_venue_training_data(language_rtree, infile, out_dir):
|
|
i = 0
|
|
|
|
f = open(os.path.join(out_dir, VENUE_LANGUAGE_DATA_FILENAME), 'w')
|
|
writer = csv.writer(f, 'tsv_no_quote')
|
|
|
|
for key, value, deps in parse_osm(infile):
|
|
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
|
|
if not name_language:
|
|
continue
|
|
|
|
venue_type = None
|
|
for key in (u'amenity', u'building'):
|
|
amenity = value.get(key, u'').strip()
|
|
if amenity in ('yes', 'y'):
|
|
continue
|
|
|
|
if amenity:
|
|
venue_type = u':'.join([key, amenity])
|
|
break
|
|
|
|
if venue_type is None:
|
|
continue
|
|
|
|
for k, v in name_language.iteritems():
|
|
for s in v:
|
|
s = s.strip()
|
|
if k in languages:
|
|
writer.writerow((k, country, safe_encode(venue_type), tsv_string(s)))
|
|
if i % 1000 == 0 and i > 0:
|
|
print('did, {} venues'.format(i))
|
|
i += 1
|
|
|
|
f.close()
|
|
|
|
if __name__ == '__main__':
|
|
# Handle argument parsing here
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('-s', '--streets-file',
|
|
help='Path to planet-ways.osm')
|
|
|
|
parser.add_argument('--unabbreviated',
|
|
action='store_true',
|
|
default=False,
|
|
help='Use unabbreviated street names for token counts')
|
|
|
|
parser.add_argument('-a', '--address-file',
|
|
help='Path to planet-addresses.osm')
|
|
|
|
parser.add_argument('-v', '--venues-file',
|
|
help='Path to planet-venues.osm')
|
|
|
|
parser.add_argument('-b', '--borders-file',
|
|
help='Path to planet-borders.osm')
|
|
|
|
parser.add_argument('-f', '--format',
|
|
action='store_true',
|
|
default=False,
|
|
help='Save formatted addresses (slow)')
|
|
|
|
parser.add_argument('-u', '--untagged',
|
|
action='store_true',
|
|
default=False,
|
|
help='Save untagged formatted addresses (slow)')
|
|
|
|
parser.add_argument('-l', '--limited-addresses',
|
|
action='store_true',
|
|
default=False,
|
|
help='Save formatted addresses without house names or country (slow)')
|
|
|
|
parser.add_argument('-t', '--temp-dir',
|
|
default=tempfile.gettempdir(),
|
|
help='Temp directory to use')
|
|
|
|
parser.add_argument('-g', '--language-rtree-dir',
|
|
required=True,
|
|
help='Language RTree directory')
|
|
|
|
parser.add_argument('-r', '--rtree-dir',
|
|
default=None,
|
|
help='OSM reverse geocoder RTree directory')
|
|
|
|
parser.add_argument('-q', '--quattroshapes-rtree-dir',
|
|
default=None,
|
|
help='Quattroshapes reverse geocoder RTree directory')
|
|
|
|
parser.add_argument('-d', '--geonames-db',
|
|
default=None,
|
|
help='GeoNames db file')
|
|
|
|
parser.add_argument('-n', '--neighborhoods-rtree-dir',
|
|
default=None,
|
|
help='Neighborhoods reverse geocoder RTree directory')
|
|
|
|
parser.add_argument('-o', '--out-dir',
|
|
default=os.getcwd(),
|
|
help='Output directory')
|
|
|
|
args = parser.parse_args()
|
|
|
|
init_country_names()
|
|
init_languages()
|
|
init_disambiguation()
|
|
init_gazetteers()
|
|
|
|
language_rtree = LanguagePolygonIndex.load(args.language_rtree_dir)
|
|
osm_rtree = None
|
|
if args.rtree_dir:
|
|
osm_rtree = OSMReverseGeocoder.load(args.rtree_dir)
|
|
|
|
neighborhoods_rtree = None
|
|
if args.neighborhoods_rtree_dir:
|
|
neighborhoods_rtree = NeighborhoodReverseGeocoder.load(args.neighborhoods_rtree_dir)
|
|
|
|
quattroshapes_rtree = None
|
|
if args.quattroshapes_rtree_dir:
|
|
quattroshapes_rtree = QuattroshapesReverseGeocoder.load(args.quattroshapes_rtree_dir)
|
|
|
|
geonames = None
|
|
|
|
if args.geonames_db:
|
|
geonames = GeoNamesDB(args.geonames_db)
|
|
|
|
# Can parallelize
|
|
if args.streets_file:
|
|
build_ways_training_data(language_rtree, args.streets_file, args.out_dir, abbreviate_streets=not args.unabbreviated)
|
|
if args.borders_file:
|
|
build_toponym_training_data(language_rtree, args.borders_file, args.out_dir)
|
|
|
|
if args.address_file:
|
|
if osm_rtree is None:
|
|
parser.error('--rtree-dir required for formatted addresses')
|
|
elif neighborhoods_rtree is None:
|
|
parser.error('--neighborhoods-rtree-dir required for formatted addresses')
|
|
elif quattroshapes_rtree is None:
|
|
parser.error('--quattroshapes-rtree-dir required for formatted addresses')
|
|
elif geonames is None:
|
|
parser.error('--geonames-db required for formatted addresses')
|
|
|
|
if args.address_file and args.format_only:
|
|
osm_formatter = OSMAddressFormatter(osm_rtree, language_rtree, neighborhoods_rtree, quattroshapes_rtree, geonames)
|
|
osm_formatter.build_training_data(args.address_file, args.out_dir, tag_components=not args.untagged)
|
|
if args.address_file and args.limited_addresses:
|
|
osm_formatter = OSMAddressFormatter(osm_rtree, language_rtree, neighborhoods_rtree, quattroshapes_rtree, geonames, splitter=u' ')
|
|
osm_formatter.build_limited_training_data(args.address_file, args.out_dir)
|
|
if args.venues_file:
|
|
build_venue_training_data(language_rtree, args.venues_file, args.out_dir)
|