Files
libpostal/src/logistic_regression_trainer.c

153 lines
4.6 KiB
C

#include "logistic_regression_trainer.h"
#include "sparse_matrix_utils.h"
void logistic_regression_trainer_destroy(logistic_regression_trainer_t *self) {
if (self == NULL) return;
if (self->feature_ids != NULL) {
trie_destroy(self->feature_ids);
}
if (self->label_ids != NULL) {
kh_destroy(str_uint32, self->label_ids);
}
if (self->weights != NULL) {
matrix_destroy(self->weights);
}
if (self->last_updated != NULL) {
uint32_array_destroy(self->last_updated);
}
if (self->unique_columns != NULL) {
kh_destroy(int_set, self->unique_columns);
}
if (self->batch_columns != NULL) {
uint32_array_destroy(self->batch_columns);
}
if (self->gradient != NULL) {
matrix_destroy(self->gradient);
}
free(self);
}
logistic_regression_trainer_t *logistic_regression_trainer_init(trie_t *feature_ids, khash_t(str_uint32) *label_ids, double gamma_0, double lambda) {
if (feature_ids == NULL || label_ids == NULL) return NULL;
logistic_regression_trainer_t *trainer = malloc(sizeof(logistic_regression_trainer_t));
if (trainer == NULL) return NULL;
trainer->feature_ids = feature_ids;
// Add one feature for the bias unit
trainer->num_features = trie_num_keys(feature_ids) + 1;
trainer->label_ids = label_ids;
trainer->num_labels = kh_size(label_ids);
trainer->weights = matrix_new_zeros(trainer->num_features, trainer->num_labels);
trainer->gradient = matrix_new_zeros(trainer->num_features, trainer->num_labels);
trainer->unique_columns = kh_init(int_set);
trainer->batch_columns = uint32_array_new_size(trainer->num_features);
trainer->last_updated = uint32_array_new_zeros(trainer->num_features);
trainer->lambda = lambda;
trainer->iters = 0;
trainer->epochs = 0;
trainer->gamma_0 = gamma_0;
return trainer;
exit_trainer_created:
logistic_regression_trainer_destroy(trainer);
return NULL;
}
static matrix_t *model_expectation(sparse_matrix_t *x, matrix_t *theta) {
matrix_t *p_y = matrix_new_zeros(x->m, theta->n);
if (p_y == NULL) return NULL;
if(logistic_regression_model_expectation(theta, x, p_y)) {
return p_y;
} else {
matrix_destroy(p_y);
return NULL;
}
}
double logistic_regression_trainer_batch_cost(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
size_t m = self->weights->m;
size_t n = self->weights->n;
sparse_matrix_t *x = feature_matrix(self->feature_ids, features);
uint32_array *y = label_vector(self->label_ids, labels);
matrix_t *p_y = matrix_new_zeros(x->m, n);
double cost = logistic_regression_cost_function(self->weights, x, y, p_y, self->lambda);
matrix_destroy(p_y);
uint32_array_destroy(y);
sparse_matrix_destroy(x);
return cost;
}
bool logistic_regression_trainer_train_batch(logistic_regression_trainer_t *self, feature_count_array *features, cstring_array *labels) {
size_t m = self->weights->m;
size_t n = self->weights->n;
// Optimize
matrix_t *gradient = self->gradient;
sparse_matrix_t *x = feature_matrix(self->feature_ids, features);
uint32_array *y = label_vector(self->label_ids, labels);
matrix_t *p_y = matrix_new_zeros(x->m, n);
bool ret = false;
if (!sparse_matrix_add_unique_columns(x, self->unique_columns, self->batch_columns)) {
log_error("Unique columns failed\n");
goto exit_matrices_created;
}
if (self->lambda > 0.0 && !stochastic_gradient_descent_regularize_weights(self->weights, self->batch_columns, self->last_updated, self->iters, self->lambda, self->gamma_0)) {
log_error("Error regularizing weights\n");
goto exit_matrices_created;
}
if (!logistic_regression_gradient_sparse(self->weights, gradient, x, y, p_y, self->batch_columns, self->lambda)) {
log_error("Gradient failed\n");
goto exit_matrices_created;
}
size_t data_len = m * n;
double gamma = stochastic_gradient_descent_gamma_t(self->gamma_0, self->lambda, self->iters);
ret = stochastic_gradient_descent_sparse(self->weights, gradient, self->batch_columns, gamma);
self->iters++;
exit_matrices_created:
matrix_destroy(p_y);
uint32_array_destroy(y);
sparse_matrix_destroy(x);
return ret;
}
bool logistic_regression_trainer_finalize(logistic_regression_trainer_t *self) {
if (self == NULL) return false;
if (self->lambda > 0.0) {
return stochastic_gradient_descent_finalize_weights(self->weights, self->last_updated, self->iters, self->lambda, self->gamma_0);
}
return true;
}