Files
libpostal/scripts/geodata/osm/osm_address_training_data.py

757 lines
27 KiB
Python

# -*- coding: utf-8 -*-
'''
osm_address_training_data.py
----------------------------
This script generates several training sets from OpenStreetMap addresses,
streets, venues and toponyms.
Note: the combined size of all the files created by this script exceeds 100GB
so if training these models, it is wise to use a server-grade machine with
plenty of disk space. The following commands can be used in parallel to create
all the training sets:
Ways:
python osm_address_training_data.py -s $(OSM_DIR)/planet-ways.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Venues:
python osm_address_training_data.py -v $(OSM_DIR)/planet-venues.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Address streets:
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Limited formatted addresses:
python osm_address_training_data.py -a -l $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Formatted addresses (tagged):
python osm_address_training_data.py -a -f $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Formatted addresses (untagged):
python osm_address_training_data.py -a -f -u $(OSM_DIR)/planet-addresses.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Toponyms:
python osm_address_training_data.py -b $(OSM_DIR)/planet-borders.osm --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
'''
import argparse
import csv
import os
import operator
import re
import sys
import tempfile
import urllib
import ujson as json
import HTMLParser
from collections import defaultdict, OrderedDict
from lxml import etree
from itertools import ifilter, chain
this_dir = os.path.realpath(os.path.dirname(__file__))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir, os.pardir, 'python')))
from geodata.language_id.disambiguation import *
from geodata.language_id.polygon_lookup import country_and_languages
from geodata.i18n.languages import *
from geodata.address_formatting.formatter import AddressFormatter
from geodata.polygons.language_polys import *
from geodata.i18n.unicode_paths import DATA_DIR
from geodata.csv_utils import *
from geodata.file_utils import *
this_dir = os.path.realpath(os.path.dirname(__file__))
WAY_OFFSET = 10 ** 15
RELATION_OFFSET = 2 * 10 ** 15
# Input files
PLANET_ADDRESSES_INPUT_FILE = 'planet-addresses.osm'
PLANET_WAYS_INPUT_FILE = 'planet-ways.osm'
PLANET_VENUES_INPUT_FILE = 'planet-venues.osm'
PLANET_BORDERS_INPUT_FILE = 'planet-borders.osm'
ALL_OSM_TAGS = set(['node', 'way', 'relation'])
WAYS_RELATIONS = set(['way', 'relation'])
# Output files
WAYS_LANGUAGE_DATA_FILENAME = 'streets_by_language.tsv'
ADDRESS_LANGUAGE_DATA_FILENAME = 'address_streets_by_language.tsv'
ADDRESS_FORMAT_DATA_TAGGED_FILENAME = 'formatted_addresses_tagged.tsv'
ADDRESS_FORMAT_DATA_FILENAME = 'formatted_addresses.tsv'
ADDRESS_FORMAT_DATA_LANGUAGE_FILENAME = 'formatted_addresses_by_language.tsv'
TOPONYM_LANGUAGE_DATA_FILENAME = 'toponyms_by_language.tsv'
class OSMField(object):
def __init__(self, name, c_constant, alternates=None):
self.name = name
self.c_constant = c_constant
self.alternates = alternates
osm_fields = [
# Field if alternate_names present, default field name if not, C header constant
OSMField('addr:housename', 'OSM_HOUSE_NAME'),
OSMField('addr:housenumber', 'OSM_HOUSE_NUMBER'),
OSMField('addr:block', 'OSM_BLOCK'),
OSMField('addr:street', 'OSM_STREET_ADDRESS'),
OSMField('addr:place', 'OSM_PLACE'),
OSMField('addr:city', 'OSM_CITY', alternates=['addr:locality', 'addr:municipality', 'addr:hamlet']),
OSMField('addr:suburb', 'OSM_SUBURB'),
OSMField('addr:neighborhood', 'OSM_NEIGHBORHOOD', alternates=['addr:neighbourhood']),
OSMField('addr:district', 'OSM_DISTRICT'),
OSMField('addr:subdistrict', 'OSM_SUBDISTRICT'),
OSMField('addr:ward', 'OSM_WARD'),
OSMField('addr:state', 'OSM_STATE'),
OSMField('addr:province', 'OSM_PROVINCE'),
OSMField('addr:postcode', 'OSM_POSTAL_CODE', alternates=['addr:postal_code']),
OSMField('addr:country', 'OSM_COUNTRY'),
]
# Currently, all our data sets are converted to nodes with osmconvert before parsing
def parse_osm(filename, allowed_types=ALL_OSM_TAGS):
f = open(filename)
parser = etree.iterparse(f)
single_type = len(allowed_types) == 1
for (_, elem) in parser:
elem_id = long(elem.attrib.pop('id', 0))
item_type = elem.tag
if elem_id >= WAY_OFFSET and elem_id < RELATION_OFFSET:
elem_id -= WAY_OFFSET
item_type = 'way'
elif elem_id >= RELATION_OFFSET:
elem_id -= RELATION_OFFSET
item_type = 'relation'
if item_type in allowed_types:
attrs = OrderedDict(elem.attrib)
attrs.update(OrderedDict([(e.attrib['k'], e.attrib['v'])
for e in elem.getchildren() if e.tag == 'tag']))
key = elem_id if single_type else '{}:{}'.format(item_type, elem_id)
yield key, attrs
if elem.tag != 'tag':
elem.clear()
while elem.getprevious() is not None:
del elem.getparent()[0]
def write_osm_json(filename, out_filename):
out = open(out_filename, 'w')
writer = csv.writer(out, 'tsv_no_quote')
for key, attrs in parse_osm(filename):
writer.writerow((key, json.dumps(attrs)))
out.close()
def read_osm_json(filename):
reader = csv.reader(open(filename), delimiter='\t')
for key, attrs in reader:
yield key, json.loads(attrs)
def normalize_osm_name_tag(tag, script=False):
norm = tag.rsplit(':', 1)[-1]
if not script:
return norm
return norm.split('_', 1)[0]
beginning_re = re.compile('^[^0-9\-]+', re.UNICODE)
end_re = re.compile('[^0-9]+$', re.UNICODE)
latitude_dms_regex = re.compile(ur'^(-?[0-9]{1,2})[ ]*[ :°ºd][ ]*([0-5]?[0-9])?[ ]*[:\'\u2032m]?[ ]*([0-5]?[0-9](?:\.\d+)?)?[ ]*[:\?\"\u2033s]?[ ]*(N|n|S|s)?$', re.I | re.UNICODE)
longitude_dms_regex = re.compile(ur'^(-?1[0-8][0-9]|0?[0-9]{1,2})[ ]*[ :°ºd][ ]*([0-5]?[0-9])?[ ]*[:\'\u2032m]?[ ]*([0-5]?[0-9](?:\.\d+)?)?[ ]*[:\?\"\u2033s]?[ ]*(E|e|W|w)?$', re.I | re.UNICODE)
latitude_decimal_with_direction_regex = re.compile('^(-?[0-9][0-9](?:\.[0-9]+))[ ]*[ :°ºd]?[ ]*(N|n|S|s)$', re.I)
longitude_decimal_with_direction_regex = re.compile('^(-?1[0-8][0-9]|0?[0-9][0-9](?:\.[0-9]+))[ ]*[ :°ºd]?[ ]*(E|e|W|w)$', re.I)
def latlon_to_floats(latitude, longitude):
have_lat = False
have_lon = False
latitude = safe_decode(latitude).strip(u' ,;|')
longitude = safe_decode(longitude).strip(u' ,;|')
latitude = latitude.replace(u',', u'.')
longitude = longitude.replace(u',', u'.')
lat_dms = latitude_dms_regex.match(latitude)
lat_dir = latitude_decimal_with_direction_regex.match(latitude)
if lat_dms:
d, m, s, c = lat_dms.groups()
sign = direction_sign(c)
latitude = degrees_to_decimal(d or 0, m or 0, s or 0)
have_lat = True
elif lat_dir:
d, c = lat_dir.groups()
sign = direction_sign(c)
latitude = float(d) * sign
have_lat = True
else:
latitude = re.sub(beginning_re, u'', latitude)
latitude = re.sub(end_re, u'', latitude)
lon_dms = longitude_dms_regex.match(longitude)
lon_dir = longitude_decimal_with_direction_regex.match(longitude)
if lon_dms:
d, m, s, c = lon_dms.groups()
sign = direction_sign(c)
longitude = degrees_to_decimal(d or 0, m or 0, s or 0)
have_lon = True
elif lon_dir:
d, c = lon_dir.groups()
sign = direction_sign(c)
longitude = float(d) * sign
have_lon = True
else:
longitude = re.sub(beginning_re, u'', longitude)
longitude = re.sub(end_re, u'', longitude)
return float(latitude), float(longitude)
def get_language_names(language_rtree, key, value, tag_prefix='name'):
if not ('lat' in value and 'lon' in value):
return None, None
has_colon = ':' in tag_prefix
tag_first_component = tag_prefix.split(':')[0]
tag_last_component = tag_prefix.split(':')[-1]
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
except Exception:
return None, None
country, candidate_languages, language_props = country_and_languages(language_rtree, latitude, longitude)
if not (country and candidate_languages):
return None, None
num_langs = len(candidate_languages)
default_langs = set([l['lang'] for l in candidate_languages if l.get('default')])
num_defaults = len(default_langs)
name_language = defaultdict(list)
alternate_langs = []
equivalent_alternatives = defaultdict(list)
for k, v in value.iteritems():
if k.startswith(tag_prefix + ':') and normalize_osm_name_tag(k, script=True) in languages:
lang = k.rsplit(':', 1)[-1]
alternate_langs.append((lang, v))
equivalent_alternatives[v].append(lang)
has_alternate_names = len(alternate_langs)
# Some countries like Lebanon list things like name:en == name:fr == "Rue Abdel Hamid Karame"
# Those addresses should be disambiguated rather than taken for granted
ambiguous_alternatives = set([k for k, v in equivalent_alternatives.iteritems() if len(v) > 1])
regional_defaults = 0
country_defaults = 0
regional_langs = set()
country_langs = set()
for p in language_props:
if p['admin_level'] > 0:
regional_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
regional_langs |= set([l['lang'] for l in p['languages']])
else:
country_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
country_langs |= set([l['lang'] for l in p['languages']])
ambiguous_already_seen = set()
for k, v in value.iteritems():
if k.startswith(tag_prefix + ':'):
if v not in ambiguous_alternatives:
norm = normalize_osm_name_tag(k)
norm_sans_script = normalize_osm_name_tag(k, script=True)
if norm in languages or norm_sans_script in languages:
name_language[norm].append(v)
elif v not in ambiguous_already_seen:
langs = [(lang, lang in default_langs) for lang in equivalent_alternatives[v]]
lang = disambiguate_language(v, langs)
if lang != AMBIGUOUS_LANGUAGE and lang != UNKNOWN_LANGUAGE:
name_language[lang].append(v)
ambiguous_already_seen.add(v)
elif not has_alternate_names and k.startswith(tag_first_component) and (has_colon or ':' not in k) and normalize_osm_name_tag(k, script=True) == tag_last_component:
if num_langs == 1:
name_language[candidate_languages[0]['lang']].append(v)
else:
lang = disambiguate_language(v, [(l['lang'], l['default']) for l in candidate_languages])
default_lang = candidate_languages[0]['lang']
if lang == AMBIGUOUS_LANGUAGE:
return None, None
elif lang == UNKNOWN_LANGUAGE and num_defaults == 1:
name_language[default_lang].append(v)
elif lang != UNKNOWN_LANGUAGE:
if lang != default_lang and lang in country_langs and country_defaults > 1 and regional_defaults > 0 and lang in WELL_REPRESENTED_LANGUAGES:
return None, None
name_language[lang].append(v)
else:
return None, None
return country, name_language
def build_ways_training_data(language_rtree, infile, out_dir):
'''
Creates a training set for language classification using most OSM ways
(streets) under a fairly lengthy osmfilter definition which attempts to
identify all roads/ways designated for motor vehicle traffic, which
is more-or-less what we'd expect to see in addresses.
The fields are {language, country, street name}. Example:
ar ma ﺵﺍﺮﻋ ﻑﺎﻟ ﻮﻟﺩ ﻊﻤﻳﺭ
'''
i = 0
f = open(os.path.join(out_dir, WAYS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile, allowed_types=WAYS_RELATIONS):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
for k, v in name_language.iteritems():
for s in v:
if k in languages:
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'ways'
i += 1
f.close()
OSM_IGNORE_KEYS = (
'house',
)
def strip_keys(value, ignore_keys):
for key in ignore_keys:
value.pop(key, None)
def build_address_format_training_data(language_rtree, infile, out_dir, tag_components=True):
'''
Creates formatted address training data for supervised sequence labeling (or potentially
for unsupervised learning e.g. for word vectors) using addr:* tags in OSM.
Example:
cs cz Gorkého/road ev.2459/house_number | 40004/postcode Trmice/city | CZ/country
The field structure is similar to other training data created by this script i.e.
{language, country, data}. The data field here is a sequence of labeled tokens similar
to what we might see in part-of-speech tagging.
This format uses a special character "|" to denote possible breaks in the input (comma, newline).
This information can potentially be used downstream by the sequence model as these
breaks may be present at prediction time.
Example:
sr rs Crkva Svetog Arhangela Mihaila | Vukov put BB | 15303 Trsic
This may be useful in learning word representations, statistical phrases, morphology
or other models requiring only the sequence of words.
'''
i = 0
formatter = AddressFormatter()
if tag_components:
formatted_tagged_file = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_TAGGED_FILENAME), 'w')
writer = csv.writer(formatted_tagged_file, 'tsv_no_quote')
else:
formatted_file = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_FILENAME), 'w')
writer = csv.writer(formatted_file, 'tsv_no_quote')
remove_keys = OSM_IGNORE_KEYS
for key, value in parse_osm(infile):
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
except Exception:
continue
country, candidate_languages, language_props = country_and_languages(language_rtree, latitude, longitude)
if not (country and candidate_languages):
continue
for key in remove_keys:
_ = value.pop(key, None)
language = None
if tag_components:
if len(candidate_languages) == 1:
language = candidate_languages[0]['lang']
else:
street = value.get('addr:street', None)
if street is None:
continue
language = disambiguate_language(street, [(l['lang'], l['default']) for l in candidate_languages])
formatted_address = formatter.format_address(country, value, tag_components=tag_components)
if formatted_address is not None:
formatted_address = tsv_string(formatted_address)
if not formatted_address or not formatted_address.strip():
continue
if tag_components:
row = (language, country, formatted_address)
else:
row = (formatted_address,)
writer.writerow(row)
if formatted_address is not None:
i += 1
if i % 1000 == 0 and i > 0:
print 'did', i, 'formatted addresses'
NAME_KEYS = (
'name',
'addr:housename',
)
COUNTRY_KEYS = (
'country',
'country_name',
'addr:country',
)
POSTAL_KEYS = (
'postcode',
'postal_code',
'addr:postcode',
'addr:postal_code',
)
def build_address_format_training_data_limited(language_rtree, infile, out_dir):
'''
Creates a special kind of formatted address training data from OSM's addr:* tags
but are designed for use in language classification. These records are similar
to the untagged formatted records but include the language and country
(suitable for concatenation with the rest of the language training data),
and remove several fields like country which usually do not contain helpful
information for classifying the language.
Example:
nb no Olaf Ryes Plass 8 | Oslo
'''
i = 0
formatter = AddressFormatter()
f = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_LANGUAGE_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
remove_keys = NAME_KEYS + COUNTRY_KEYS + POSTAL_KEYS + OSM_IGNORE_KEYS
for key, value in parse_osm(infile):
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
except Exception:
continue
for k in remove_keys:
_ = value.pop(k, None)
if not value:
continue
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='addr:street')
if not name_language:
continue
single_language = len(name_language) == 1
for lang, val in name_language.iteritems():
if lang not in languages:
continue
address_dict = value.copy()
for k in address_dict.keys():
namespaced_val = u'{}:{}'.format(k, lang)
if namespaced_val in address_dict:
address_dict[k] = address_dict[namespaced_val]
elif not single_language:
address_dict.pop(k)
if not address_dict:
continue
formatted_address_untagged = formatter.format_address(country, address_dict, tag_components=False)
if formatted_address_untagged is not None:
formatted_address_untagged = tsv_string(formatted_address_untagged)
writer.writerow((lang, country, formatted_address_untagged))
i += 1
if i % 1000 == 0 and i > 0:
print 'did', i, 'formatted addresses'
apposition_regex = re.compile('(.*[^\s])[\s]*\([\s]*(.*[^\s])[\s]*\)$', re.I)
html_parser = HTMLParser.HTMLParser()
def normalize_wikipedia_title(title):
match = apposition_regex.match(title)
if match:
title = match.group(1)
title = safe_decode(title)
title = html_parser.unescape(title)
title = urllib.unquote_plus(title)
return title.replace(u'_', u' ').strip()
def build_toponym_training_data(language_rtree, infile, out_dir):
'''
Data set of toponyms by language and country which should assist
in language classification. OSM tends to use the native language
by default (e.g. Москва instead of Moscow). Toponyms get messy
due to factors like colonialism, historical names, name borrowing
and the shortness of the names generally. In these cases
we're more strict as to what constitutes a valid language for a
given country.
Example:
ja jp 東京都
'''
i = 0
f = open(os.path.join(out_dir, TOPONYM_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile):
if not sum((1 for k, v in value.iteritems() if k.startswith('name'))) > 0:
continue
try:
latitude, longitude = latlon_to_floats(value['lat'], value['lon'])
except Exception:
continue
country, candidate_languages, language_props = country_and_languages(language_rtree, latitude, longitude)
if not (country and candidate_languages):
continue
name_language = defaultdict(list)
official = official_languages[country]
default_langs = set([l for l, default in official.iteritems() if default])
regional_langs = list(chain(*(p['languages'] for p in language_props if p.get('admin_level', 0) > 0)))
top_lang = None
if len(official) > 0:
top_lang = official.iterkeys().next()
# E.g. Hindi in India, Urdu in Pakistan
if top_lang is not None and top_lang not in WELL_REPRESENTED_LANGUAGES and len(default_langs) > 1:
default_langs -= WELL_REPRESENTED_LANGUAGES
valid_languages = set([l['lang'] for l in candidate_languages])
'''
WELL_REPRESENTED_LANGUAGES are languages like English, French, etc. for which we have a lot of data
WELL_REPRESENTED_LANGUAGE_COUNTRIES are more-or-less the "origin" countries for said languages where
we can take the place names as examples of the language itself (e.g. place names in France are examples
of French, whereas place names in much of Francophone Africa tend to get their names from languages
other than French, even though French is the official language.
'''
valid_languages -= set([lang for lang in valid_languages if lang in WELL_REPRESENTED_LANGUAGES and country not in WELL_REPRESENTED_LANGUAGE_COUNTRIES[lang]])
valid_languages |= default_langs
if not valid_languages:
continue
have_qualified_names = False
for k, v in value.iteritems():
if not k.startswith('name:'):
continue
norm = normalize_osm_name_tag(k)
norm_sans_script = normalize_osm_name_tag(k, script=True)
if norm in languages:
lang = norm
elif norm_sans_script in languages:
lang = norm_sans_script
else:
continue
if lang in valid_languages:
have_qualified_names = True
name_language[lang].append(v)
if not have_qualified_names and len(regional_langs) <= 1 and 'name' in value and len(valid_languages) == 1:
name_language[top_lang].append(value['name'])
for k, v in name_language.iteritems():
for s in v:
s = s.strip()
if not s:
continue
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'toponyms'
i += 1
f.close()
def build_address_training_data(langauge_rtree, infile, out_dir, format=False):
'''
Creates training set similar to the ways data but using addr:street tags instead.
These may be slightly closer to what we'd see in real live addresses, containing
variations, some abbreviations (although this is discouraged in OSM), etc.
Example record:
eu es Errebal kalea
'''
i = 0
f = open(os.path.join(out_dir, ADDRESS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile):
country, street_language = get_language_names(language_rtree, key, value, tag_prefix='addr:street')
if not street_language:
continue
for k, v in street_language.iteritems():
for s in v:
s = s.strip()
if not s:
continue
if k in languages:
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'streets'
i += 1
f.close()
VENUE_LANGUAGE_DATA_FILENAME = 'names_by_language.tsv'
def build_venue_training_data(language_rtree, infile, out_dir):
i = 0
f = open(os.path.join(out_dir, VENUE_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value in parse_osm(infile):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
venue_type = None
for key in (u'amenity', u'building'):
amenity = value.get(key, u'').strip()
if amenity in ('yes', 'y'):
continue
if amenity:
venue_type = u':'.join([key, amenity])
break
if venue_type is None:
continue
for k, v in name_language.iteritems():
for s in v:
s = s.strip()
if k in languages:
writer.writerow((k, country, safe_encode(venue_type), tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'venues'
i += 1
f.close()
if __name__ == '__main__':
# Handle argument parsing here
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--streets-file',
help='Path to planet-ways.osm')
parser.add_argument('-a', '--address-file',
help='Path to planet-addresses.osm')
parser.add_argument('-v', '--venues-file',
help='Path to planet-venues.osm')
parser.add_argument('-b', '--borders-file',
help='Path to planet-borders.osm')
parser.add_argument('-f', '--format-only',
action='store_true',
default=False,
help='Save formatted addresses (slow)')
parser.add_argument('-u', '--untagged',
action='store_true',
default=False,
help='Save untagged formatted addresses (slow)')
parser.add_argument('-l', '--limited-addresses',
action='store_true',
default=False,
help='Save formatted addresses without house names or country (slow)')
parser.add_argument('-t', '--temp-dir',
default=tempfile.gettempdir(),
help='Temp directory to use')
parser.add_argument('-r', '--rtree-dir',
required=True,
help='Language RTree directory')
parser.add_argument('-o', '--out-dir',
default=os.getcwd(),
help='Output directory')
args = parser.parse_args()
init_languages()
language_rtree = LanguagePolygonIndex.load(args.rtree_dir)
street_types_gazetteer.configure()
# Can parallelize
if args.streets_file:
build_ways_training_data(language_rtree, args.streets_file, args.out_dir)
if args.borders_file:
build_toponym_training_data(language_rtree, args.borders_file, args.out_dir)
if args.address_file and not args.format_only and not args.limited_addresses:
build_address_training_data(language_rtree, args.address_file, args.out_dir)
if args.address_file and args.format_only:
build_address_format_training_data(language_rtree, args.address_file, args.out_dir, tag_components=not args.untagged)
if args.address_file and args.limited_addresses:
build_address_format_training_data_limited(language_rtree, args.address_file, args.out_dir)
if args.venues_file:
build_venue_training_data(language_rtree, args.venues_file, args.out_dir)