Files
libpostal/scripts/geodata/neighborhoods/reverse_geocode.py

529 lines
19 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
import argparse
import logging
import operator
import os
import re
import six
import subprocess
import sys
this_dir = os.path.realpath(os.path.dirname(__file__))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
from geodata.address_formatting.formatter import AddressFormatter
from geodata.coordinates.conversion import latlon_to_decimal
from geodata.encoding import safe_decode
from geodata.file_utils import ensure_dir, download_file
from geodata.i18n.unicode_properties import get_chars_by_script
from geodata.i18n.word_breaks import ideographic_scripts
from geodata.names.deduping import NameDeduper
from geodata.osm.components import osm_address_components
from geodata.osm.definitions import osm_definitions
from geodata.osm.extract import parse_osm, osm_type_and_id, NODE, WAY, RELATION, OSM_NAME_TAGS
from geodata.polygons.index import *
from geodata.polygons.reverse_geocode import QuattroshapesReverseGeocoder, OSMCountryReverseGeocoder, OSMReverseGeocoder
from geodata.statistics.tf_idf import IDFIndex
class NeighborhoodDeduper(NameDeduper):
# Lossless conversions only
replacements = {
u'saint': u'st',
u'and': u'&',
u'': u'0',
u'': u'1',
u'': u'2',
u'': u'3',
u'': u'4',
u'': u'5',
u'': u'6',
u'': u'7',
u'': u'8',
u'': u'9',
u'': u'10',
}
discriminative_words = set([
# Han numbers
u'', u'',
u'', u'',
u'', u'',
u'', u'',
u'', u'',
u'', u'',
u'', u'',
u'', u'',
u'', u'',
# Roman numerals
u'i', u'ii',
u'iii', u'iv',
u'v', u'vi',
u'vii', u'viii',
u'ix', u'x',
u'xi', u'xii',
u'xiii', u'xiv',
u'xv', u'xvi',
u'xvii', u'xviii',
u'xix', u'xx',
# English directionals
u'north', u'south',
u'east', u'west',
u'northeast', u'northwest',
u'southeast', u'southwest',
# Spanish, Portguese and Italian directionals
u'norte', u'nord', u'sur', u'sul', u'sud',
u'est', u'este', u'leste', u'oeste', u'ovest',
# New in various languages
u'new',
u'nova',
u'novo',
u'nuevo',
u'nueva',
u'nuovo',
u'nuova',
# Qualifiers
u'heights',
u'hills',
u'upper', u'lower',
u'little', u'great',
u'park',
u'parque',
u'village',
])
stopwords = set([
u'cp',
u'de',
u'la',
u'urbanizacion',
u'do',
u'da',
u'dos',
u'del',
u'community',
u'bairro',
u'barrio',
u'le',
u'el',
u'mah',
u'раион',
u'vila',
u'villa',
u'kampung',
u'ahupua`a',
])
class ClickThatHoodReverseGeocoder(GeohashPolygonIndex):
simplify_tolerance = 0.00001
preserve_topology = True
persistent_polygons = False
cache_size = 0
SCRATCH_DIR = '/tmp'
# Contains accurate boundaries for neighborhoods sans weird GeoPlanet names like "Adelphi" or "Crown Heights South"
NEIGHBORHOODS_REPO = 'https://github.com/blackmad/neighborhoods'
@classmethod
def clone_repo(cls, path):
subprocess.check_call(['rm', '-rf', path])
subprocess.check_call(['git', 'clone', cls.NEIGHBORHOODS_REPO, path])
@classmethod
def create_neighborhoods_index(cls):
scratch_dir = cls.SCRATCH_DIR
repo_path = os.path.join(scratch_dir, 'neighborhoods')
cls.clone_repo(repo_path)
neighborhoods_dir = os.path.join(scratch_dir, 'neighborhoods', 'index')
ensure_dir(neighborhoods_dir)
index = cls(save_dir=neighborhoods_dir)
have_geonames = set()
is_neighborhood = set()
for filename in os.listdir(repo_path):
path = os.path.join(repo_path, filename)
base_name = filename.split('.')[0].split('gn-')[-1]
if filename.endswith('.geojson') and filename.startswith('gn-'):
have_geonames.add(base_name)
elif filename.endswith('metadata.json'):
data = json.load(open(os.path.join(repo_path, filename)))
if data.get('neighborhoodNoun', [None])[0] in (None, 'rione'):
is_neighborhood.add(base_name)
for filename in os.listdir(repo_path):
if not filename.endswith('.geojson'):
continue
base_name = filename.rsplit('.geojson')[0]
if base_name in have_geonames:
f = open(os.path.join(repo_path, 'gn-{}'.format(filename)))
elif base_name in is_neighborhood:
f = open(os.path.join(repo_path, filename))
else:
continue
try:
index.add_geojson_like_file(json.load(f)['features'])
except ValueError:
continue
return index
class NeighborhoodReverseGeocoder(RTreePolygonIndex):
'''
Neighborhoods are very important in cities like NYC, SF, Chicago, London
and many others. We want the address parser to be trained with addresses
that sufficiently capture variations in address patterns, including
neighborhoods. Quattroshapes neighborhood data (in the US at least)
is not great in terms of names, mostly becasue GeoPlanet has so many
incorrect names. The neighborhoods project, also known as ClickThatHood
has very accurate polygons with correct names, but only for a handful
of cities. OSM usually lists neighborhoods and some other local admin
areas like boroughs as points rather than polygons.
This index merges all of the above data sets in prioritized order
(ClickThatHood > OSM > Quattroshapes) to provide unified point-in-polygon
tests for neighborhoods. The properties vary by source but each has
source has least a "name" key which in practice is what we care about.
'''
PRIORITIES_FILENAME = 'priorities.json'
DUPE_THRESHOLD = 0.9
persistent_polygons = True
cache_size = 100000
source_priorities = {
'clickthathood': 0, # Best names/polygons
'osm_cth': 1, # OSM names matched with ClickThatHood polygon
'osm_quattro': 2, # OSM names matched with Quattroshapes polygon
'quattroshapes': 3, # Good results in some countries/areas
}
level_priorities = {
'neighborhood': 0,
'local_admin': 1,
}
regex_replacements = [
# Paris arrondissements, listed like "PARIS-1ER-ARRONDISSEMENT" in Quqttroshapes
(re.compile('^paris-(?=[\d])', re.I), ''),
(re.compile('^prague(?= [\d]+$)', re.I), 'Praha'),
]
quattroshapes_city_district_patterns = [
six.u('Praha [\d]+'),
]
quattroshapes_city_district_regex = re.compile('|'.join([six.u('^\s*{}\s*$').format(p) for p in quattroshapes_city_district_patterns]), re.I | re.U)
@classmethod
def count_words(cls, s):
doc = defaultdict(int)
for t, c in NeighborhoodDeduper.content_tokens(s):
doc[t] += 1
return doc
@classmethod
def create_from_osm_and_quattroshapes(cls, filename, quattroshapes_dir, country_rtree_dir, osm_rtree_dir, output_dir):
'''
Given an OSM file (planet or some other bounds) containing neighborhoods
as points (some suburbs have boundaries)
and their dependencies, create an R-tree index for coarse-grained
reverse geocoding.
Note: the input file is expected to have been created using
osmfilter. Use fetch_osm_address_data.sh for planet or copy the
admin borders commands if using other geometries.
'''
index = cls(save_dir=output_dir)
logger = logging.getLogger('neighborhoods')
qs_scratch_dir = os.path.join(quattroshapes_dir, 'qs_neighborhoods')
ensure_dir(qs_scratch_dir)
logger.info('Creating Quattroshapes neighborhoods')
qs = QuattroshapesNeighborhoodsReverseGeocoder.create_neighborhoods_index(quattroshapes_dir, qs_scratch_dir)
logger.info('Creating ClickThatHood neighborhoods')
cth = ClickThatHoodReverseGeocoder.create_neighborhoods_index()
country_rtree = OSMCountryReverseGeocoder.load(country_rtree_dir)
osm_admin_rtree = OSMReverseGeocoder.load(osm_rtree_dir)
osm_admin_rtree.cache_size = 1000
logger.info('Creating IDF index')
idf = IDFIndex()
char_scripts = get_chars_by_script()
for idx in (cth, qs):
for i in xrange(idx.i):
props = idx.get_properties(i)
name = props.get('name')
if name is not None:
doc = cls.count_words(name)
idf.update(doc)
for key, attrs, deps in parse_osm(filename):
for k, v in six.iteritems(attrs):
if any((k.startswith(name_key) for name_key in OSM_NAME_TAGS)):
doc = cls.count_words(v)
idf.update(doc)
qs.matched = [False] * qs.i
cth.matched = [False] * cth.i
logger.info('Matching OSM points to neighborhood polygons')
# Parse OSM and match neighborhood/suburb points to Quattroshapes/ClickThatHood polygons
num_polys = 0
for element_id, attrs, deps in parse_osm(filename):
try:
lat, lon = latlon_to_decimal(attrs['lat'], attrs['lon'])
except ValueError:
continue
osm_name = attrs.get('name')
if not osm_name:
continue
id_type, element_id = element_id.split(':')
element_id = long(element_id)
props['type'] = id_type
props['id'] = element_id
possible_neighborhood = osm_definitions.meets_definition(attrs, osm_definitions.NEIGHBORHOOD)
is_neighborhood = attrs.get('place') in ('neighbourhood', 'neighborhood')
country, candidate_languages = country_rtree.country_and_languages(lat, lon)
component_name = None
component_name = osm_address_components.component_from_properties(country, attrs)
ranks = []
osm_names = []
for key in OSM_NAME_TAGS:
name = attrs.get(key)
if name:
osm_names.append(name)
for name_key in OSM_NAME_TAGS:
osm_names.extend([v for k, v in six.iteritems(attrs) if k.startswith('{}:'.format(name_key))])
for idx in (cth, qs):
candidates = idx.get_candidate_polygons(lat, lon, return_all=True)
if candidates:
max_sim = 0.0
arg_max = None
normalized_qs_names = {}
for osm_name in osm_names:
contains_ideographs = any(((char_scripts[ord(c)] or '').lower() in ideographic_scripts
for c in safe_decode(osm_name)))
for i in candidates:
props = idx.get_properties(i)
name = normalized_qs_names.get(i)
if not name:
name = props.get('name')
if not name:
continue
for pattern, repl in cls.regex_replacements:
name = pattern.sub(repl, name)
normalized_qs_names[i] = name
if is_neighborhood and idx is qs and props.get(QuattroshapesReverseGeocoder.LEVEL) != 'neighborhood':
continue
if not contains_ideographs:
sim = NeighborhoodDeduper.compare(osm_name, name, idf)
else:
# Many Han/Hangul characters are common, shouldn't use IDF
sim = NeighborhoodDeduper.compare_ideographs(osm_name, name)
if sim > max_sim:
max_sim = sim
poly = idx.get_polygon(i)
arg_max = (max_sim, props, poly.context, idx, i)
if arg_max:
ranks.append(arg_max)
ranks.sort(key=operator.itemgetter(0), reverse=True)
if ranks and ranks[0][0] >= cls.DUPE_THRESHOLD:
score, props, poly, idx, i = ranks[0]
existing_osm_boundaries = osm_admin_rtree.point_in_poly(lat, lon, return_all=True)
skip_node = False
for poly_index, osm_props in enumerate(existing_osm_boundaries):
containing_component = None
name = osm_props.get('name')
# Only exact name matches here since we're comparins OSM to OSM
if name and name.lower() != attrs.get('name', '').lower():
continue
containing_ids = [(boundary['type'], boundary['id']) for boundary in existing_osm_boundaries[poly_index + 1:]]
containing_component = osm_address_components.component_from_properties(country, osm_props, containing=containing_ids)
if containing_component and containing_component != component_name and AddressFormatter.component_order[containing_component] <= AddressFormatter.component_order[AddressFormatter.CITY]:
skip_node = True
break
# Skip this element
if skip_node:
continue
containing_ids = [(boundary['type'], boundary['id']) for boundary in existing_osm_boundaries]
component = osm_address_components.component_from_properties(country, attrs, containing=containing_ids)
attrs['component'] = component
if idx is cth:
attrs['polygon_type'] = 'neighborhood'
source = 'osm_cth'
else:
level = props.get(QuattroshapesReverseGeocoder.LEVEL, None)
source = 'osm_quattro'
if level == 'neighborhood':
attrs['polygon_type'] = 'neighborhood'
else:
attrs['polygon_type'] = 'local_admin'
attrs['source'] = source
index.index_polygon(poly)
index.add_polygon(poly, attrs)
idx.matched[i] = True
num_polys += 1
if num_polys % 1000 == 0 and num_polys > 0:
logger.info('did {} neighborhoods'.format(num_polys))
for idx, source in ((cth, 'clickthathood'), (qs, 'quattroshapes')):
for i in xrange(idx.i):
props = idx.get_properties(i)
poly = idx.get_polygon(i)
if idx.matched[i]:
continue
props['source'] = source
if idx is cth or props.get(QuattroshapesReverseGeocoder.LEVEL, None) == 'neighborhood':
component = AddressFormatter.SUBURB
if source == 'quattroshapes':
name = props.get('name')
if not name:
continue
for pattern, repl in cls.regex_replacements:
name = pattern.sub(repl, name)
props['name'] = name
if cls.quattroshapes_city_district_regex.match(name):
component = AddressFormatter.CITY_DISTRICT
props['component'] = component
props['polygon_type'] = 'neighborhood'
else:
# We don't actually care about local admin polygons unless they match OSM
continue
index.index_polygon(poly.context)
index.add_polygon(poly.context, props)
return index
def setup(self):
self.priorities = []
def index_polygon_properties(self, properties):
self.priorities.append((self.level_priorities[properties['polygon_type']], self.source_priorities[properties['source']]))
def load_polygon_properties(self, d):
self.priorities = json.load(open(os.path.join(d, self.PRIORITIES_FILENAME)))
def save_polygon_properties(self, d):
json.dump(self.priorities, open(os.path.join(d, self.PRIORITIES_FILENAME), 'w'))
def priority(self, i):
return self.priorities[i]
def get_candidate_polygons(self, lat, lon):
candidates = super(NeighborhoodReverseGeocoder, self).get_candidate_polygons(lat, lon)
return sorted(candidates, key=self.priority)
class QuattroshapesNeighborhoodsReverseGeocoder(GeohashPolygonIndex, QuattroshapesReverseGeocoder):
persistent_polygons = False
cache_size = None
@classmethod
def create_neighborhoods_index(cls, quattroshapes_dir,
output_dir,
index_filename=None,
polys_filename=DEFAULT_POLYS_FILENAME):
local_admin_filename = os.path.join(quattroshapes_dir, cls.LOCAL_ADMIN_FILENAME)
neighborhoods_filename = os.path.join(quattroshapes_dir, cls.NEIGHBORHOODS_FILENAME)
return cls.create_from_shapefiles([local_admin_filename, neighborhoods_filename],
output_dir, index_filename=index_filename,
polys_filename=polys_filename)
if __name__ == '__main__':
# Handle argument parsing here
parser = argparse.ArgumentParser()
parser.add_argument('-q', '--quattroshapes-dir',
help='Path to quattroshapes dir')
parser.add_argument('-a', '--osm-admin-rtree-dir',
help='Path to OSM admin rtree dir')
parser.add_argument('-c', '--country-rtree-dir',
help='Path to country rtree dir')
parser.add_argument('-n', '--osm-neighborhoods-file',
help='Path to OSM neighborhoods file (no dependencies, .osm format)')
parser.add_argument('-o', '--out-dir',
default=os.getcwd(),
help='Output directory')
logging.basicConfig(level=logging.INFO)
args = parser.parse_args()
if args.osm_neighborhoods_file and args.quattroshapes_dir and args.osm_admin_rtree_dir and args.country_rtree_dir:
index = NeighborhoodReverseGeocoder.create_from_osm_and_quattroshapes(
args.osm_neighborhoods_file,
args.quattroshapes_dir,
args.country_rtree_dir,
args.osm_admin_rtree_dir,
args.out_dir
)
else:
parser.error('Must specify quattroshapes dir or osm admin borders file')
index.save()