170 lines
5.8 KiB
Python
170 lines
5.8 KiB
Python
import argparse
|
|
import csv
|
|
import os
|
|
import six
|
|
import sys
|
|
|
|
from collections import defaultdict, Counter
|
|
from itertools import izip, islice
|
|
|
|
this_dir = os.path.realpath(os.path.dirname(__file__))
|
|
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
|
|
|
|
from geodata.text.tokenize import tokenize, token_types
|
|
from geodata.encoding import safe_encode
|
|
|
|
|
|
class FrequentPhraseExtractor(object):
|
|
'''
|
|
Extract common multi-word phrases from a file/iterator using the
|
|
frequent itemsets method to keep memory usage low.
|
|
'''
|
|
WORD_TOKEN_TYPES = (token_types.WORD,
|
|
token_types.IDEOGRAPHIC_CHAR,
|
|
token_types.ABBREVIATION,
|
|
token_types.HANGUL_SYLLABLE,
|
|
token_types.ACRONYM)
|
|
|
|
def __init__(self, min_count=5):
|
|
self.min_count = min_count
|
|
|
|
self.vocab = defaultdict(int)
|
|
self.frequencies = defaultdict(int)
|
|
self.train_words = 0
|
|
|
|
def ngrams(self, words, n=2):
|
|
for t in izip(*(islice(words, i, None) for i in xrange(n))):
|
|
yield t
|
|
|
|
def add_tokens(self, s):
|
|
for t, c in tokenize(s):
|
|
if c in self.WORD_TOKEN_TYPES:
|
|
self.vocab[((t.lower(), c), )] += 1
|
|
self.train_words += 1
|
|
|
|
def create_vocab(self, f):
|
|
for line in f:
|
|
line = line.rstrip()
|
|
if not line:
|
|
continue
|
|
self.add_tokens(line)
|
|
self.prune_vocab()
|
|
|
|
def prune_vocab(self):
|
|
for k in self.vocab.keys():
|
|
if self.vocab[k] < self.min_count:
|
|
del self.vocab[k]
|
|
|
|
def add_ngrams(self, s, n=2):
|
|
sequences = []
|
|
seq = []
|
|
for t, c in tokenize(s):
|
|
if c in self.WORD_TOKEN_TYPES:
|
|
seq.append((t, c))
|
|
elif seq:
|
|
sequences.append(seq)
|
|
seq = []
|
|
if seq:
|
|
sequences.append(seq)
|
|
|
|
for seq in sequences:
|
|
for gram in self.ngrams(seq, n=n):
|
|
last_c = None
|
|
|
|
prev_tokens = tuple([(t.lower(), c) for t, c in gram[:-1]])
|
|
if prev_tokens in self.vocab:
|
|
t, c = gram[-1]
|
|
current_token = (t.lower(), c)
|
|
|
|
self.frequencies[(prev_tokens, current_token)] += 1
|
|
|
|
def add_frequent_ngrams_to_vocab(self):
|
|
for k, v in six.iteritems(self.frequencies):
|
|
if v < self.min_count:
|
|
continue
|
|
prev, current = k
|
|
self.vocab[prev + (current,)] = v
|
|
|
|
def find_ngram_phrases(self, f, n=2):
|
|
self.frequencies = defaultdict(int)
|
|
for line in f:
|
|
line = line.rstrip()
|
|
if not line:
|
|
continue
|
|
self.add_ngrams(line, n=n)
|
|
self.add_frequent_ngrams_to_vocab()
|
|
self.frequencies = defaultdict(int)
|
|
|
|
@classmethod
|
|
def from_file(cls, filename, max_phrase_len=5, min_count=5):
|
|
phrases = cls()
|
|
|
|
print('Doing frequent words for {}'.format(filename))
|
|
phrases.create_vocab(open(filename))
|
|
|
|
for n in xrange(2, max_phrase_len + 1):
|
|
print('Doing frequent ngrams, n={} for {}'.format(n, filename))
|
|
phrases.find_ngram_phrases(open(filename), n=n)
|
|
|
|
print('Done with {}'.format(filename))
|
|
|
|
return phrases
|
|
|
|
def to_tsv(self, filename, mode='w', max_rows=None):
|
|
f = open(filename, mode)
|
|
writer = csv.writer(f, delimiter='\t')
|
|
for i, (k, v) in enumerate(Counter(self.vocab).most_common()):
|
|
if max_rows is not None and i == max_rows:
|
|
break
|
|
|
|
gram = []
|
|
for t, c in k:
|
|
gram.append(t)
|
|
if c != token_types.IDEOGRAPHIC_CHAR:
|
|
gram.append(six.text_type(' '))
|
|
|
|
phrase = six.text_type('').join(gram)
|
|
|
|
writer.writerow((safe_encode(phrase), safe_encode(len(k)), safe_encode(v)))
|
|
|
|
if __name__ == '__main__':
|
|
'''
|
|
Extract frequent words and multi-word phrases from an input file. The
|
|
input file is expected to be a simple text file with one "sentence" per line.
|
|
For OSM we typically use only street names and venue names.
|
|
|
|
Phrases are considered to be sequences of n contiguous tokens given that all the
|
|
tokens are of a "word" type according to the libpostal tokenizer, which implements
|
|
the full Unicode TR-29 spec and will e.g. treat ideograms as individual tokens even
|
|
though they are usually not separated by whitespace or punctuation.
|
|
|
|
Using phrases is not only helpful for finding frequent patterns like "county road"
|
|
or "roman catholic church" in English, but is also helpful e.g. in CJK languages for
|
|
finding words that are longer than a single ideogram.
|
|
|
|
Example usage:
|
|
|
|
python extract_phrases.py en -o en.tsv --min-count=100
|
|
find . -type f -size -10M | xargs -n1 basename | xargs -n1 --max-procs=4 -I{} python extract_phrases.py {} -o {}.tsv --min-count=5
|
|
'''
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('filename', help='Input file')
|
|
parser.add_argument('-o', '--output-file', required=True,
|
|
help='Output file')
|
|
parser.add_argument('-p', '--phrase-len', default=5, type=int,
|
|
help='Maximum phrase length')
|
|
parser.add_argument('-n', '--min-count', default=5, type=int,
|
|
help='Minimum count threshold')
|
|
parser.add_argument('-m', '--max-rows', default=None, type=int)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.phrase_len < 1:
|
|
parser.error('--phrase-len must be >= 1')
|
|
|
|
phrases = FrequentPhraseExtractor.from_file(args.filename,
|
|
min_count=args.min_count,
|
|
max_phrase_len=args.phrase_len)
|
|
phrases.to_tsv(args.output_file, max_rows=args.max_rows)
|