67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
import random
|
|
|
|
from geodata.addresses.config import address_config
|
|
from geodata.address_expansions.gazetteers import chains_gazetteer
|
|
from geodata.categories.query import *
|
|
from geodata.text.normalize import normalized_tokens
|
|
from geodata.text.tokenize import tokenize, token_types
|
|
|
|
|
|
class Chain(object):
|
|
@classmethod
|
|
def tokenize_name(cls, name):
|
|
if not name:
|
|
return []
|
|
tokens = normalized_tokens(name)
|
|
return tokens
|
|
|
|
@classmethod
|
|
def possible_chain(cls, name):
|
|
'''
|
|
Determines if a venue name contains the name of a known chain store.
|
|
|
|
Returns a tuple of:
|
|
|
|
(True/False, known chain phrases, other tokens)
|
|
|
|
Handles cases like "Hard Rock Cafe Times Square" and allows for downstream
|
|
decision making (i.e. if the tokens have a low IDF in the local area we might
|
|
want to consider it a chain).
|
|
'''
|
|
tokens = cls.tokenize_name(name)
|
|
if not tokens:
|
|
return False
|
|
matches = chains_gazetteer.filter(tokens)
|
|
other_tokens = []
|
|
phrases = []
|
|
for t, c, l, d in matches:
|
|
if c == token_types.PHRASE:
|
|
phrases.append((t, c, l, d))
|
|
else:
|
|
other_tokens.append((t, c))
|
|
|
|
return len(phrases) > 0, phrases, other_tokens if len(phrases) > 0 else []
|
|
|
|
@classmethod
|
|
def extract(cls, name):
|
|
'''
|
|
Determines if an entire venue name matches a known chain store.
|
|
|
|
Note: to avoid false positives, only return True if all of the tokens
|
|
in the venue's name are part of a single chain store phrase. This will
|
|
miss a few things like "Hard Rock Cafe Times Square" and the like.
|
|
|
|
It will however handle compound chain stores like Subway/Taco Bell
|
|
'''
|
|
|
|
possible, phrases, other_tokens = cls.possible_chain(name)
|
|
is_chain = possible and not any((c in token_types.WORD_TOKEN_TYPES for t, c in other_tokens))
|
|
return is_chain, phrases if is_chain else []
|
|
|
|
@classmethod
|
|
def alternate_form(cls, language, dictionary, canonical):
|
|
choices = address_config.sample_phrases.get((language, dictionary), {}).get(canonical)
|
|
if not choices:
|
|
return canonical
|
|
return random.choice(choices)
|