Files
libpostal/scripts/geodata/osm/osm_address_training_data.py

536 lines
20 KiB
Python

# -*- coding: utf-8 -*-
'''
osm_address_training_data.py
----------------------------
This script generates several training sets from OpenStreetMap addresses,
streets, venues and toponyms.
Note: the combined size of all the files created by this script exceeds 100GB
so if training these models, it is wise to use a server-grade machine with
plenty of disk space. The following commands can be used in parallel to create
all the training sets:
Ways:
python osm_address_training_data.py -s $(OSM_DIR)/planet-ways.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Venues:
python osm_address_training_data.py -v $(OSM_DIR)/planet-venues.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Limited formatted addresses:
python osm_address_training_data.py -a -l $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) -o $(OUT_DIR)
Formatted addresses (tagged):
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm -f --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --quattroshapes-rtree-dir=$(QS_TREE_DIR) --geonames-db=$(GEONAMES_DB_PATH) -o $(OUT_DIR)
Formatted addresses (untagged):
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm -f -u --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --quattroshapes-rtree-dir=$(QS_TREE_DIR) --geonames-db=$(GEONAMES_DB_PATH) -o $(OUT_DIR)
Toponyms:
python osm_address_training_data.py -b $(OSM_DIR)/planet-borders.osm --language-rtree-dir=$(LANG_RTREE_DIR) -o $(OUT_DIR)
'''
import argparse
import csv
import os
import operator
import random
import re
import sys
import tempfile
import urllib
import ujson as json
import HTMLParser
from collections import defaultdict, OrderedDict
from lxml import etree
from itertools import ifilter, chain, combinations
this_dir = os.path.realpath(os.path.dirname(__file__))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
from geodata.address_expansions.abbreviations import abbreviate
from geodata.address_expansions.gazetteers import *
from geodata.addresses.components import AddressComponents
from geodata.coordinates.conversion import *
from geodata.geonames.db import GeoNamesDB
from geodata.language_id.disambiguation import *
from geodata.language_id.sample import sample_random_language
from geodata.i18n.languages import *
from geodata.neighborhoods.reverse_geocode import NeighborhoodReverseGeocoder
from geodata.osm.extract import *
from geodata.osm.formatter import OSMAddressFormatter
from geodata.polygons.language_polys import *
from geodata.polygons.reverse_geocode import *
from geodata.i18n.unicode_paths import DATA_DIR
from geodata.csv_utils import *
from geodata.file_utils import *
# Input files
PLANET_ADDRESSES_INPUT_FILE = 'planet-addresses.osm'
PLANET_WAYS_INPUT_FILE = 'planet-ways.osm'
PLANET_VENUES_INPUT_FILE = 'planet-venues.osm'
PLANET_BORDERS_INPUT_FILE = 'planet-borders.osm'
# Output files
WAYS_LANGUAGE_DATA_FILENAME = 'streets_by_language.tsv'
ADDRESS_LANGUAGE_DATA_FILENAME = 'address_streets_by_language.tsv'
TOPONYM_LANGUAGE_DATA_FILENAME = 'toponyms_by_language.tsv'
def normalize_osm_name_tag(tag, script=False):
norm = tag.rsplit(':', 1)[-1]
if not script:
return norm
return norm.split('_', 1)[0]
def get_language_names(language_rtree, key, value, tag_prefix='name'):
if not ('lat' in value and 'lon' in value):
return None, None
has_colon = ':' in tag_prefix
tag_first_component = tag_prefix.split(':')[0]
tag_last_component = tag_prefix.split(':')[-1]
try:
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
return None, None
country, candidate_languages, language_props = language_rtree.country_and_languages(latitude, longitude)
if not (country and candidate_languages):
return None, None
num_langs = len(candidate_languages)
default_langs = set([l['lang'] for l in candidate_languages if l.get('default')])
num_defaults = len(default_langs)
name_language = defaultdict(list)
alternate_langs = []
equivalent_alternatives = defaultdict(list)
for k, v in value.iteritems():
if k.startswith(tag_prefix + ':') and normalize_osm_name_tag(k, script=True) in languages:
lang = k.rsplit(':', 1)[-1]
alternate_langs.append((lang, v))
equivalent_alternatives[v].append(lang)
has_alternate_names = len(alternate_langs)
# Some countries like Lebanon list things like name:en == name:fr == "Rue Abdel Hamid Karame"
# Those addresses should be disambiguated rather than taken for granted
ambiguous_alternatives = set([k for k, v in equivalent_alternatives.iteritems() if len(v) > 1])
regional_defaults = 0
country_defaults = 0
regional_langs = set()
country_langs = set()
for p in language_props:
if p['admin_level'] > 0:
regional_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
regional_langs |= set([l['lang'] for l in p['languages']])
else:
country_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
country_langs |= set([l['lang'] for l in p['languages']])
ambiguous_already_seen = set()
for k, v in value.iteritems():
if k.startswith(tag_prefix + ':'):
if v not in ambiguous_alternatives:
norm = normalize_osm_name_tag(k)
norm_sans_script = normalize_osm_name_tag(k, script=True)
if norm in languages or norm_sans_script in languages:
name_language[norm].append(v)
elif v not in ambiguous_already_seen:
langs = [(lang, lang in default_langs) for lang in equivalent_alternatives[v]]
lang = disambiguate_language(v, langs)
if lang != AMBIGUOUS_LANGUAGE and lang != UNKNOWN_LANGUAGE:
name_language[lang].append(v)
ambiguous_already_seen.add(v)
elif not has_alternate_names and k.startswith(tag_first_component) and (has_colon or ':' not in k) and normalize_osm_name_tag(k, script=True) == tag_last_component:
if num_langs == 1:
name_language[candidate_languages[0]['lang']].append(v)
else:
lang = disambiguate_language(v, [(l['lang'], l['default']) for l in candidate_languages])
default_lang = candidate_languages[0]['lang']
if lang == AMBIGUOUS_LANGUAGE:
return None, None
elif lang == UNKNOWN_LANGUAGE and num_defaults == 1:
name_language[default_lang].append(v)
elif lang != UNKNOWN_LANGUAGE:
if lang != default_lang and lang in country_langs and country_defaults > 1 and regional_defaults > 0 and lang in WELL_REPRESENTED_LANGUAGES:
return None, None
name_language[lang].append(v)
else:
return None, None
return country, name_language
ALL_LANGUAGES = 'all'
def build_ways_training_data(language_rtree, infile, out_dir, abbreviate_streets=True):
'''
Creates a training set for language classification using most OSM ways
(streets) under a fairly lengthy osmfilter definition which attempts to
identify all roads/ways designated for motor vehicle traffic, which
is more-or-less what we'd expect to see in addresses.
The fields are {language, country, street name}. Example:
ar ma ﺵﺍﺮﻋ ﻑﺎﻟ ﻮﻟﺩ ﻊﻤﻳﺭ
'''
i = 0
f = open(os.path.join(out_dir, WAYS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile, allowed_types=WAYS_RELATIONS):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
for lang, val in name_language.iteritems():
for v in val:
for s in v.split(';'):
if lang in languages:
writer.writerow((lang, country, tsv_string(s)))
if not abbreviate_streets:
continue
abbrev = abbreviate(street_and_synonyms_gazetteer, s, lang)
if abbrev != s:
writer.writerow((lang, country, tsv_string(abbrev)))
if i % 1000 == 0 and i > 0:
print('did {} ways'.format(i))
i += 1
f.close()
NAME_KEYS = (
'name',
'addr:housename',
)
HOUSE_NUMBER_KEYS = (
'addr:house_number',
'addr:housenumber',
'house_number'
)
COUNTRY_KEYS = (
'country',
'country_name',
'addr:country',
'is_in:country',
'addr:country_code',
'country_code',
'is_in:country_code'
)
POSTAL_KEYS = (
'postcode',
'postal_code',
'addr:postcode',
'addr:postal_code',
)
def build_toponym_training_data(language_rtree, infile, out_dir):
'''
Data set of toponyms by language and country which should assist
in language classification. OSM tends to use the native language
by default (e.g. Москва instead of Moscow). Toponyms get messy
due to factors like colonialism, historical names, name borrowing
and the shortness of the names generally. In these cases
we're more strict as to what constitutes a valid language for a
given country.
Example:
ja jp 東京都
'''
i = 0
f = open(os.path.join(out_dir, TOPONYM_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile):
if not any((k.startswith('name') for k, v in value.iteritems())):
continue
try:
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
continue
country, candidate_languages, language_props = language_rtree.country_and_languages(latitude, longitude)
if not (country and candidate_languages):
continue
name_language = defaultdict(list)
official = official_languages[country]
default_langs = set([l for l, default in official.iteritems() if default])
regional_langs = list(chain(*(p['languages'] for p in language_props if p.get('admin_level', 0) > 0)))
top_lang = None
if len(official) > 0:
top_lang = official.iterkeys().next()
# E.g. Hindi in India, Urdu in Pakistan
if top_lang is not None and top_lang not in WELL_REPRESENTED_LANGUAGES and len(default_langs) > 1:
default_langs -= WELL_REPRESENTED_LANGUAGES
valid_languages = set([l['lang'] for l in candidate_languages])
'''
WELL_REPRESENTED_LANGUAGES are languages like English, French, etc. for which we have a lot of data
WELL_REPRESENTED_LANGUAGE_COUNTRIES are more-or-less the "origin" countries for said languages where
we can take the place names as examples of the language itself (e.g. place names in France are examples
of French, whereas place names in much of Francophone Africa tend to get their names from languages
other than French, even though French is the official language.
'''
valid_languages -= set([lang for lang in valid_languages if lang in WELL_REPRESENTED_LANGUAGES and country not in WELL_REPRESENTED_LANGUAGE_COUNTRIES[lang]])
valid_languages |= default_langs
if not valid_languages:
continue
have_qualified_names = False
for k, v in value.iteritems():
if not k.startswith('name:'):
continue
norm = normalize_osm_name_tag(k)
norm_sans_script = normalize_osm_name_tag(k, script=True)
if norm in languages:
lang = norm
elif norm_sans_script in languages:
lang = norm_sans_script
else:
continue
if lang in valid_languages:
have_qualified_names = True
name_language[lang].append(v)
if not have_qualified_names and len(regional_langs) <= 1 and 'name' in value and len(valid_languages) == 1:
name_language[top_lang].append(value['name'])
for k, v in name_language.iteritems():
for s in v:
s = s.strip()
if not s:
continue
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print('did {} toponyms'.format(i))
i += 1
f.close()
def build_address_training_data(langauge_rtree, infile, out_dir, format=False):
'''
Creates training set similar to the ways data but using addr:street tags instead.
These may be slightly closer to what we'd see in real live addresses, containing
variations, some abbreviations (although this is discouraged in OSM), etc.
Example record:
eu es Errebal kalea
'''
i = 0
f = open(os.path.join(out_dir, ADDRESS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile):
country, street_language = get_language_names(language_rtree, key, value, tag_prefix='addr:street')
if not street_language:
continue
for k, v in street_language.iteritems():
for s in v:
s = s.strip()
if not s:
continue
if k in languages:
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print('did {} streets'.format(i))
i += 1
f.close()
VENUE_LANGUAGE_DATA_FILENAME = 'names_by_language.tsv'
def build_venue_training_data(language_rtree, infile, out_dir):
i = 0
f = open(os.path.join(out_dir, VENUE_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
venue_type = None
for key in (u'amenity', u'building'):
amenity = value.get(key, u'').strip()
if amenity in ('yes', 'y'):
continue
if amenity:
venue_type = u':'.join([key, amenity])
break
if venue_type is None:
continue
for k, v in name_language.iteritems():
for s in v:
s = s.strip()
if k in languages:
writer.writerow((k, country, safe_encode(venue_type), tsv_string(s)))
if i % 1000 == 0 and i > 0:
print('did, {} venues'.format(i))
i += 1
f.close()
if __name__ == '__main__':
# Handle argument parsing here
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--streets-file',
help='Path to planet-ways.osm')
parser.add_argument('--unabbreviated',
action='store_true',
default=False,
help='Use unabbreviated street names for token counts')
parser.add_argument('-a', '--address-file',
help='Path to planet-addresses.osm')
parser.add_argument('-v', '--venues-file',
help='Path to planet-venues.osm')
parser.add_argument('-b', '--borders-file',
help='Path to planet-borders.osm')
parser.add_argument('-f', '--format',
action='store_true',
default=False,
help='Save formatted addresses (slow)')
parser.add_argument('-u', '--untagged',
action='store_true',
default=False,
help='Save untagged formatted addresses (slow)')
parser.add_argument('-l', '--limited-addresses',
action='store_true',
default=False,
help='Save formatted addresses without house names or country (slow)')
parser.add_argument('-t', '--temp-dir',
default=tempfile.gettempdir(),
help='Temp directory to use')
parser.add_argument('--language-rtree-dir',
required=True,
help='Language RTree directory')
parser.add_argument('--rtree-dir',
default=None,
help='OSM reverse geocoder RTree directory')
parser.add_argument('--quattroshapes-rtree-dir',
default=None,
help='Quattroshapes reverse geocoder RTree directory')
parser.add_argument('--subdivisions-rtree-dir',
default=None,
help='Subdivisions reverse geocoder RTree directory')
parser.add_argument('--buildings-rtree-dir',
default=None,
help='Buildings reverse geocoder RTree directory')
parser.add_argument('--geonames-db',
default=None,
help='GeoNames db file')
parser.add_argument('--neighborhoods-rtree-dir',
default=None,
help='Neighborhoods reverse geocoder RTree directory')
parser.add_argument('-o', '--out-dir',
default=os.getcwd(),
help='Output directory')
args = parser.parse_args()
language_rtree = LanguagePolygonIndex.load(args.language_rtree_dir)
osm_rtree = None
if args.rtree_dir:
osm_rtree = OSMReverseGeocoder.load(args.rtree_dir)
neighborhoods_rtree = None
if args.neighborhoods_rtree_dir:
neighborhoods_rtree = NeighborhoodReverseGeocoder.load(args.neighborhoods_rtree_dir)
quattroshapes_rtree = None
if args.quattroshapes_rtree_dir:
quattroshapes_rtree = QuattroshapesReverseGeocoder.load(args.quattroshapes_rtree_dir)
subdivisions_rtree = None
if args.subdivisions_rtree_dir:
subdivisions_rtree = OSMSubdivisionReverseGeocoder.load(args.subdivisions_rtree_dir)
buildings_rtree = None
if args.subdivisions_rtree_dir:
buildings_rtree = OSMBuildingReverseGeocoder.load(args.buildings_rtree)
geonames = None
if args.geonames_db:
geonames = GeoNamesDB(args.geonames_db)
# Can parallelize
if args.streets_file:
build_ways_training_data(language_rtree, args.streets_file, args.out_dir, abbreviate_streets=not args.unabbreviated)
if args.borders_file:
build_toponym_training_data(language_rtree, args.borders_file, args.out_dir)
if args.address_file:
if osm_rtree is None:
parser.error('--rtree-dir required for formatted addresses')
elif neighborhoods_rtree is None:
parser.error('--neighborhoods-rtree-dir required for formatted addresses')
elif quattroshapes_rtree is None:
parser.error('--quattroshapes-rtree-dir required for formatted addresses')
elif geonames is None:
parser.error('--geonames-db required for formatted addresses')
if args.address_file and args.format:
components = AddressComponents(osm_rtree, language_rtree, neighborhoods_rtree, quattroshapes_rtree, geonames)
osm_formatter = OSMAddressFormatter(components, subdivisions_rtree, buildings_rtree)
osm_formatter.build_training_data(args.address_file, args.out_dir, tag_components=not args.untagged)
if args.address_file and args.limited_addresses:
components = AddressComponents(osm_rtree, language_rtree, neighborhoods_rtree, quattroshapes_rtree, geonames)
osm_formatter = OSMAddressFormatter(components, subdivisions_rtree, buildings_rtree, splitter=u' ')
osm_formatter.build_limited_training_data(args.address_file, args.out_dir)
if args.venues_file:
build_venue_training_data(language_rtree, args.venues_file, args.out_dir)