Files
libpostal/scripts/geodata/osm/osm_address_training_data.py

959 lines
36 KiB
Python

# -*- coding: utf-8 -*-
'''
osm_address_training_data.py
----------------------------
This script generates several training sets from OpenStreetMap addresses,
streets, venues and toponyms.
Note: the combined size of all the files created by this script exceeds 100GB
so if training these models, it is wise to use a server-grade machine with
plenty of disk space. The following commands can be used in parallel to create
all the training sets:
Ways:
python osm_address_training_data.py -s $(OSM_DIR)/planet-ways.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Venues:
python osm_address_training_data.py -v $(OSM_DIR)/planet-venues.osm --language-rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Address streets:
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) -o $(OUT_DIR)
Limited formatted addresses:
python osm_address_training_data.py -a -l $(OSM_DIR)/planet-addresses.osm --language-rtree-dir=$(LANG_RTREE_DIR) --rtree-dir=$(RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) -o $(OUT_DIR)
Formatted addresses (tagged):
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm -f --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Formatted addresses (untagged):
python osm_address_training_data.py -a $(OSM_DIR)/planet-addresses.osm -f -u --language-rtree-dir=$(LANG_RTREE_DIR) --neighborhoods-rtree-dir=$(NEIGHBORHOODS_RTREE_DIR) --rtree-dir=$(RTREE_DIR) -o $(OUT_DIR)
Toponyms:
python osm_address_training_data.py -b $(OSM_DIR)/planet-borders.osm --language-rtree-dir=$(LANG_RTREE_DIR) -o $(OUT_DIR)
'''
import argparse
import csv
import os
import operator
import random
import re
import sys
import tempfile
import urllib
import ujson as json
import HTMLParser
from collections import defaultdict, OrderedDict
from lxml import etree
from itertools import ifilter, chain, combinations
this_dir = os.path.realpath(os.path.dirname(__file__))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir)))
sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir, os.pardir, 'python')))
from geodata.coordinates.conversion import *
from geodata.countries.country_names import *
from geodata.language_id.disambiguation import *
from geodata.language_id.sample import sample_random_language
from geodata.states.state_abbreviations import STATE_ABBREVIATIONS, STATE_EXPANSIONS
from geodata.language_id.polygon_lookup import country_and_languages
from geodata.i18n.languages import *
from geodata.address_formatting.formatter import AddressFormatter
from geodata.osm.extract import *
from geodata.polygons.language_polys import *
from geodata.polygons.reverse_geocode import OSMReverseGeocoder, NeighborhoodReverseGeocoder
from geodata.i18n.unicode_paths import DATA_DIR
from geodata.csv_utils import *
from geodata.file_utils import *
this_dir = os.path.realpath(os.path.dirname(__file__))
# Input files
PLANET_ADDRESSES_INPUT_FILE = 'planet-addresses.osm'
PLANET_WAYS_INPUT_FILE = 'planet-ways.osm'
PLANET_VENUES_INPUT_FILE = 'planet-venues.osm'
PLANET_BORDERS_INPUT_FILE = 'planet-borders.osm'
# Output files
WAYS_LANGUAGE_DATA_FILENAME = 'streets_by_language.tsv'
ADDRESS_LANGUAGE_DATA_FILENAME = 'address_streets_by_language.tsv'
ADDRESS_FORMAT_DATA_TAGGED_FILENAME = 'formatted_addresses_tagged.tsv'
ADDRESS_FORMAT_DATA_FILENAME = 'formatted_addresses.tsv'
ADDRESS_FORMAT_DATA_LANGUAGE_FILENAME = 'formatted_addresses_by_language.tsv'
TOPONYM_LANGUAGE_DATA_FILENAME = 'toponyms_by_language.tsv'
class AddressComponent(object):
'''
Declare an address component and its dependencies e.g.
a house_numer cannot be used in the absence of a road name.
'''
ANY = 'any'
def __init__(self, name, dependencies=tuple(), method=ANY):
self.name = name
self.dependencies = dependencies
def __hash__(self):
return hash(self.name)
def __cmp__(self, other):
return cmp(self.name, other.name)
OSM_ADDRESS_COMPONENTS = OrderedDict.fromkeys([
AddressComponent(AddressFormatter.HOUSE),
AddressComponent(AddressFormatter.ROAD, dependencies=(AddressFormatter.HOUSE,
AddressFormatter.HOUSE_NUMBER,
AddressFormatter.SUBURB,
AddressFormatter.CITY,
AddressFormatter.POSTCODE)),
AddressComponent(AddressFormatter.HOUSE_NUMBER, dependencies=(AddressFormatter.ROAD,)),
AddressComponent(AddressFormatter.SUBURB, dependencies=(AddressFormatter.CITY, AddressFormatter.STATE,
AddressFormatter.POSTCODE)),
AddressComponent(AddressFormatter.CITY),
AddressComponent(AddressFormatter.STATE, dependencies=(AddressFormatter.SUBURB, AddressFormatter.CITY,
AddressFormatter.POSTCODE, AddressFormatter.COUNTRY)),
AddressComponent(AddressFormatter.POSTCODE),
AddressComponent(AddressFormatter.COUNTRY),
])
def num_deps(c):
return len(c.dependencies)
OSM_ADDRESS_COMPONENTS_SORTED = sorted(OSM_ADDRESS_COMPONENTS, key=num_deps)
OSM_ADDRESS_COMPONENT_COMBINATIONS = []
'''
The following statements create a bitset of address components
for quickly checking testing whether or not a candidate set of
address components can be considered a full geographic string
suitable for formatting (i.e. would be a valid geocoder query).
For instance, a house number by itself is not sufficient
to be considered a valid address for this purpose unless it
has a road name as well. Using bitsets we can easily answer
questions like "Is house/house_number/road/city valid?"
'''
OSM_ADDRESS_COMPONENT_VALUES = {
c.name: 1 << i
for i, c in enumerate(OSM_ADDRESS_COMPONENTS.keys())
}
OSM_ADDRESS_COMPONENTS_VALID = set()
def component_bitset(components):
return reduce(operator.or_, [OSM_ADDRESS_COMPONENT_VALUES[c] for c in components])
for i in xrange(1, len(OSM_ADDRESS_COMPONENTS.keys())):
for perm in combinations(OSM_ADDRESS_COMPONENTS.keys(), i):
perm_set = set([p.name for p in perm])
valid = all((not p.dependencies or any(d in perm_set for d in p.dependencies) for p in perm))
if valid:
components = [c.name for c in perm]
OSM_ADDRESS_COMPONENT_COMBINATIONS.append(tuple(components))
OSM_ADDRESS_COMPONENTS_VALID.add(component_bitset(components))
class OSMField(object):
def __init__(self, name, c_constant, alternates=None):
self.name = name
self.c_constant = c_constant
self.alternates = alternates
osm_fields = [
# Field if alternate_names present, default field name if not, C header constant
OSMField('addr:housename', 'OSM_HOUSE_NAME'),
OSMField('addr:housenumber', 'OSM_HOUSE_NUMBER'),
OSMField('addr:block', 'OSM_BLOCK'),
OSMField('addr:street', 'OSM_STREET_ADDRESS'),
OSMField('addr:place', 'OSM_PLACE'),
OSMField('addr:city', 'OSM_CITY', alternates=['addr:locality', 'addr:municipality', 'addr:hamlet']),
OSMField('addr:suburb', 'OSM_SUBURB'),
OSMField('addr:neighborhood', 'OSM_NEIGHBORHOOD', alternates=['addr:neighbourhood']),
OSMField('addr:district', 'OSM_DISTRICT'),
OSMField('addr:subdistrict', 'OSM_SUBDISTRICT'),
OSMField('addr:ward', 'OSM_WARD'),
OSMField('addr:state', 'OSM_STATE'),
OSMField('addr:province', 'OSM_PROVINCE'),
OSMField('addr:postcode', 'OSM_POSTAL_CODE', alternates=['addr:postal_code']),
OSMField('addr:country', 'OSM_COUNTRY'),
]
def write_osm_json(filename, out_filename):
out = open(out_filename, 'w')
writer = csv.writer(out, 'tsv_no_quote')
for key, attrs, deps in parse_osm(filename):
writer.writerow((key, json.dumps(attrs)))
out.close()
def read_osm_json(filename):
reader = csv.reader(open(filename), delimiter='\t')
for key, attrs in reader:
yield key, json.loads(attrs)
def normalize_osm_name_tag(tag, script=False):
norm = tag.rsplit(':', 1)[-1]
if not script:
return norm
return norm.split('_', 1)[0]
def get_language_names(language_rtree, key, value, tag_prefix='name'):
if not ('lat' in value and 'lon' in value):
return None, None
has_colon = ':' in tag_prefix
tag_first_component = tag_prefix.split(':')[0]
tag_last_component = tag_prefix.split(':')[-1]
try:
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
return None, None
country, candidate_languages, language_props = country_and_languages(language_rtree, latitude, longitude)
if not (country and candidate_languages):
return None, None
num_langs = len(candidate_languages)
default_langs = set([l['lang'] for l in candidate_languages if l.get('default')])
num_defaults = len(default_langs)
name_language = defaultdict(list)
alternate_langs = []
equivalent_alternatives = defaultdict(list)
for k, v in value.iteritems():
if k.startswith(tag_prefix + ':') and normalize_osm_name_tag(k, script=True) in languages:
lang = k.rsplit(':', 1)[-1]
alternate_langs.append((lang, v))
equivalent_alternatives[v].append(lang)
has_alternate_names = len(alternate_langs)
# Some countries like Lebanon list things like name:en == name:fr == "Rue Abdel Hamid Karame"
# Those addresses should be disambiguated rather than taken for granted
ambiguous_alternatives = set([k for k, v in equivalent_alternatives.iteritems() if len(v) > 1])
regional_defaults = 0
country_defaults = 0
regional_langs = set()
country_langs = set()
for p in language_props:
if p['admin_level'] > 0:
regional_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
regional_langs |= set([l['lang'] for l in p['languages']])
else:
country_defaults += sum((1 for lang in p['languages'] if lang.get('default')))
country_langs |= set([l['lang'] for l in p['languages']])
ambiguous_already_seen = set()
for k, v in value.iteritems():
if k.startswith(tag_prefix + ':'):
if v not in ambiguous_alternatives:
norm = normalize_osm_name_tag(k)
norm_sans_script = normalize_osm_name_tag(k, script=True)
if norm in languages or norm_sans_script in languages:
name_language[norm].append(v)
elif v not in ambiguous_already_seen:
langs = [(lang, lang in default_langs) for lang in equivalent_alternatives[v]]
lang = disambiguate_language(v, langs)
if lang != AMBIGUOUS_LANGUAGE and lang != UNKNOWN_LANGUAGE:
name_language[lang].append(v)
ambiguous_already_seen.add(v)
elif not has_alternate_names and k.startswith(tag_first_component) and (has_colon or ':' not in k) and normalize_osm_name_tag(k, script=True) == tag_last_component:
if num_langs == 1:
name_language[candidate_languages[0]['lang']].append(v)
else:
lang = disambiguate_language(v, [(l['lang'], l['default']) for l in candidate_languages])
default_lang = candidate_languages[0]['lang']
if lang == AMBIGUOUS_LANGUAGE:
return None, None
elif lang == UNKNOWN_LANGUAGE and num_defaults == 1:
name_language[default_lang].append(v)
elif lang != UNKNOWN_LANGUAGE:
if lang != default_lang and lang in country_langs and country_defaults > 1 and regional_defaults > 0 and lang in WELL_REPRESENTED_LANGUAGES:
return None, None
name_language[lang].append(v)
else:
return None, None
return country, name_language
def build_ways_training_data(language_rtree, infile, out_dir):
'''
Creates a training set for language classification using most OSM ways
(streets) under a fairly lengthy osmfilter definition which attempts to
identify all roads/ways designated for motor vehicle traffic, which
is more-or-less what we'd expect to see in addresses.
The fields are {language, country, street name}. Example:
ar ma ﺵﺍﺮﻋ ﻑﺎﻟ ﻮﻟﺩ ﻊﻤﻳﺭ
'''
i = 0
f = open(os.path.join(out_dir, WAYS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile, allowed_types=WAYS_RELATIONS):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
for k, v in name_language.iteritems():
for s in v:
if k in languages:
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'ways'
i += 1
f.close()
OSM_IGNORE_KEYS = (
'house',
)
def strip_keys(value, ignore_keys):
for key in ignore_keys:
value.pop(key, None)
def osm_reverse_geocoded_components(admin_rtree, country, latitude, longitude):
ret = defaultdict(list)
for props in admin_rtree.point_in_poly(latitude, longitude, return_all=True):
name = props.get('name')
if not name:
continue
for k, v in props.iteritems():
normalized_key = osm_address_components.get_component(country, k, v)
if normalized_key:
ret[normalized_key].append(props)
return ret
def build_address_format_training_data(admin_rtree, language_rtree, neighborhoods_rtree, infile, out_dir, tag_components=True):
'''
Creates formatted address training data for supervised sequence labeling (or potentially
for unsupervised learning e.g. for word vectors) using addr:* tags in OSM.
Example:
cs cz Gorkého/road ev.2459/house_number | 40004/postcode Trmice/city | CZ/country
The field structure is similar to other training data created by this script i.e.
{language, country, data}. The data field here is a sequence of labeled tokens similar
to what we might see in part-of-speech tagging.
This format uses a special character "|" to denote possible breaks in the input (comma, newline).
Note that for the address parser, we'd like it to be robust to many different types
of input, so we may selectively eleminate components
This information can potentially be used downstream by the sequence model as these
breaks may be present at prediction time.
Example:
sr rs Crkva Svetog Arhangela Mihaila | Vukov put BB | 15303 Trsic
This may be useful in learning word representations, statistical phrases, morphology
or other models requiring only the sequence of words.
'''
i = 0
formatter = AddressFormatter()
osm_address_components.configure()
if tag_components:
formatted_tagged_file = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_TAGGED_FILENAME), 'w')
writer = csv.writer(formatted_tagged_file, 'tsv_no_quote')
else:
formatted_file = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_FILENAME), 'w')
writer = csv.writer(formatted_file, 'tsv_no_quote')
remove_keys = OSM_IGNORE_KEYS
for key, value, deps in parse_osm(infile):
try:
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
continue
country, candidate_languages, language_props = country_and_languages(language_rtree, latitude, longitude)
if not (country and candidate_languages):
continue
for key in remove_keys:
_ = value.pop(key, None)
language = None
if tag_components:
if len(candidate_languages) == 1:
language = candidate_languages[0]['lang']
else:
street = value.get('addr:street', None)
if street is None:
continue
language = disambiguate_language(street, [(l['lang'], l['default']) for l in candidate_languages])
address_components = {k: v for k, v in value.iteritems() if k.startswith('addr:') or k == 'name'}
formatter.replace_aliases(address_components)
address_country = address_components.get(AddressFormatter.COUNTRY)
'''
Country names
-------------
In OSM, addr:country is almost always an ISO-3166 alpha-2 country code.
However, we'd like to expand these to include natural language forms
of the country names we might be likely to encounter in a geocoder or
handwritten address.
These splits are somewhat arbitrary but could potentially be fit to data
from OpenVenues or other sources on the usage of country name forms.
If the address includes a country, the selection procedure proceeds as follows:
1. With probability a, select the country name in the language of the address
(determined above), or with the localized country name if the language is
undtermined or ambiguous.
2. With probability b(1-a), sample a language from the distribution of
languages on the Internet and use the country's name in that language.
3. This is implicit, but with probability (1-b)(1-a), keep the country code
'''
non_local_language = None
r = random.random()
# 1. 60% of the time: use the country name in the current language or the country's local language
if address_country and r < 0.6:
localized = None
if language and language not in (AMBIGUOUS_LANGUAGE, UNKNOWN_LANGUAGE):
localized = language_country_names.get(language, {}).get(address_country.upper())
if not localized:
localized = country_localized_display_name(address_country.lower())
if localized:
address_components[AddressFormatter.COUNTRY] = localized
# 2. 10% of the time: country's name in a language samples from the distribution of languages on the Internet
elif address_country and r < 0.7:
non_local_language = sample_random_language()
lang_country = language_country_names.get(non_local_language, {}).get(address_country.upper())
if lang_country:
address_components[AddressFormatter.COUNTRY] = lang_country
# 3. Implicit: the rest of the time keep the country code
'''
States
------
Primarily for the US, Canada and Australia, OSM tends to use the abbreviated state name
whereas we'd like to include both forms, so wtih some probability, replace the abbreviated
name with the unabbreviated one e.g. CA => California
'''
address_state = address_components.get(AddressFormatter.STATE)
if address_state:
state_full_name = STATE_ABBREVIATIONS.get(country.upper(), {}).get(address_state.upper(), {}).get(language)
if state_full_name and random.random() < 0.3:
address_components[AddressFormatter.STATE] = state_full_name
'''
OSM boundaries
--------------
For many addresses, the city, district, region, etc. are all implicitly
generated by the reverse geocoder e.g. we do not need an addr:city tag
to identify that 40.74, -74.00 is in New York City as well as its parent
geographies (New York county, New York state, etc.)
Where possible we augment the addr:* tags with some of the reverse-geocoded
relations from OSM.
Since addresses found on the web may have the same properties, we
include these qualifiers in the training data.
'''
osm_components = osm_reverse_geocoded_components(admin_rtree, country, latitude, longitude)
if osm_components:
if non_local_language is not None:
suffix = ':{}'.format(non_local_language)
else:
suffix = ''
name_key = ''.join(('name', suffix))
raw_name_key = 'name'
short_name_key = ''.join(('short_name', suffix))
raw_short_name_key = 'short_name'
alt_name_key = ''.join(('alt_name', suffix))
raw_alt_name_key = 'alt_name'
official_name_key = ''.join(('official_name', suffix))
raw_official_name_key = 'official_name'
poly_components = defaultdict(list)
for component, values in osm_components.iteritems():
seen = set()
# Choose which name to use with given probabilities
r = random.random()
if r < 0.1:
# 10% of the time use the short name
key = short_name_key
raw_key = raw_short_name_key
elif r < 0.2:
# 10% of the time use the official name
key = official_name_key
raw_key = raw_official_name_key
elif r < 0.3:
# 10% of the time use the official name
key = alt_name_key
raw_key = raw_alt_name_key
else:
# 70% of the time use the name tag
key = name_key
raw_key = raw_name_key
for value in values:
name = value.get(key, value.get(raw_key))
if not name:
name = value.get(name_key, value.get(raw_name_key))
if not name:
continue
if (component, name) not in seen:
poly_components[component].append(name)
seen.add((component, name))
for component, vals in poly_components.iteritems():
if component not in address_components:
value = u', '.join(vals)
if component == AddressFormatter.STATE and random.random() < 0.7:
value = STATE_EXPANSIONS.get(address_country, {}).get(value, value)
address_components[component] = value
'''
Neighborhoods
-------------
In some cities, neighborhoods may be included in a free-text address.
OSM includes many neighborhoods but only as points, rather than the polygons
needed to perform reverse-geocoding. We use a hybrid index containing
Quattroshapes/Zetashapes polygons matched fuzzily with OSM names (which are
on the whole of better quality).
'''
neighborhood = neighborhoods_rtree.point_in_poly(latitude, longitude)
if neighborhood and AddressFormatter.SUBURB not in address_components:
address_components[AddressFormatter.SUBURB] = neighborhood['name']
# Version with all components
formatted_address = formatter.format_address(country, address_components, tag_components=tag_components, minimal_only=not tag_components)
if tag_components:
formatted_addresses = []
formatted_addresses.append(formatted_address)
address_components = {k: v for k, v in address_components.iteritems() if k in OSM_ADDRESS_COMPONENT_VALUES}
if not address_components:
continue
current_components = component_bitset(address_components.keys())
for component in address_components.keys():
if current_components ^ OSM_ADDRESS_COMPONENT_VALUES[component] in OSM_ADDRESS_COMPONENTS_VALID and random.random() < 0.5:
address_components.pop(component)
current_components ^= OSM_ADDRESS_COMPONENT_VALUES[component]
if not address_components:
break
formatted_address = formatter.format_address(country, address_components, tag_components=tag_components, minimal_only=False)
formatted_addresses.append(formatted_address)
for formatted_address in formatted_addresses:
if formatted_address and formatted_address.strip():
formatted_address = tsv_string(formatted_address)
if not formatted_address or not formatted_address.strip():
continue
row = (language, country, formatted_address)
writer.writerow(row)
elif formatted_address and formatted_address.strip():
formatted_address = tsv_string(formatted_address)
writer.writerow([formatted_address])
i += 1
if i % 1000 == 0 and i > 0:
print 'did', i, 'formatted addresses'
NAME_KEYS = (
'name',
'addr:housename',
)
COUNTRY_KEYS = (
'country',
'country_name',
'addr:country',
'is_in:country',
'addr:country_code',
'country_code',
'is_in:country_code'
)
POSTAL_KEYS = (
'postcode',
'postal_code',
'addr:postcode',
'addr:postal_code',
)
def build_address_format_training_data_limited(rtree, language_rtree, infile, out_dir):
'''
Creates a special kind of formatted address training data from OSM's addr:* tags
but are designed for use in language classification. These records are similar
to the untagged formatted records but include the language and country
(suitable for concatenation with the rest of the language training data),
and remove several fields like country which usually do not contain helpful
information for classifying the language.
Example:
nb no Olaf Ryes Plass 8 | Oslo
'''
i = 0
formatter = AddressFormatter()
f = open(os.path.join(out_dir, ADDRESS_FORMAT_DATA_LANGUAGE_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
remove_keys = NAME_KEYS + COUNTRY_KEYS + POSTAL_KEYS + OSM_IGNORE_KEYS
for key, value, deps in parse_osm(infile):
try:
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
continue
for k in remove_keys:
_ = value.pop(k, None)
if not value:
continue
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='addr:street')
if not name_language:
continue
single_language = len(name_language) == 1
for lang, val in name_language.iteritems():
if lang not in languages:
continue
address_dict = value.copy()
for k in address_dict.keys():
namespaced_val = u'{}:{}'.format(k, lang)
if namespaced_val in address_dict:
address_dict[k] = address_dict[namespaced_val]
elif not single_language:
address_dict.pop(k)
if not address_dict:
continue
formatted_address_untagged = formatter.format_address(country, address_dict, tag_components=False)
if formatted_address_untagged is not None:
formatted_address_untagged = tsv_string(formatted_address_untagged)
writer.writerow((lang, country, formatted_address_untagged))
i += 1
if i % 1000 == 0 and i > 0:
print 'did', i, 'formatted addresses'
def build_toponym_training_data(language_rtree, infile, out_dir):
'''
Data set of toponyms by language and country which should assist
in language classification. OSM tends to use the native language
by default (e.g. Москва instead of Moscow). Toponyms get messy
due to factors like colonialism, historical names, name borrowing
and the shortness of the names generally. In these cases
we're more strict as to what constitutes a valid language for a
given country.
Example:
ja jp 東京都
'''
i = 0
f = open(os.path.join(out_dir, TOPONYM_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile):
if not sum((1 for k, v in value.iteritems() if k.startswith('name'))) > 0:
continue
try:
latitude, longitude = latlon_to_decimal(value['lat'], value['lon'])
except Exception:
continue
country, candidate_languages, language_props = country_and_languages(language_rtree, latitude, longitude)
if not (country and candidate_languages):
continue
name_language = defaultdict(list)
official = official_languages[country]
default_langs = set([l for l, default in official.iteritems() if default])
regional_langs = list(chain(*(p['languages'] for p in language_props if p.get('admin_level', 0) > 0)))
top_lang = None
if len(official) > 0:
top_lang = official.iterkeys().next()
# E.g. Hindi in India, Urdu in Pakistan
if top_lang is not None and top_lang not in WELL_REPRESENTED_LANGUAGES and len(default_langs) > 1:
default_langs -= WELL_REPRESENTED_LANGUAGES
valid_languages = set([l['lang'] for l in candidate_languages])
'''
WELL_REPRESENTED_LANGUAGES are languages like English, French, etc. for which we have a lot of data
WELL_REPRESENTED_LANGUAGE_COUNTRIES are more-or-less the "origin" countries for said languages where
we can take the place names as examples of the language itself (e.g. place names in France are examples
of French, whereas place names in much of Francophone Africa tend to get their names from languages
other than French, even though French is the official language.
'''
valid_languages -= set([lang for lang in valid_languages if lang in WELL_REPRESENTED_LANGUAGES and country not in WELL_REPRESENTED_LANGUAGE_COUNTRIES[lang]])
valid_languages |= default_langs
if not valid_languages:
continue
have_qualified_names = False
for k, v in value.iteritems():
if not k.startswith('name:'):
continue
norm = normalize_osm_name_tag(k)
norm_sans_script = normalize_osm_name_tag(k, script=True)
if norm in languages:
lang = norm
elif norm_sans_script in languages:
lang = norm_sans_script
else:
continue
if lang in valid_languages:
have_qualified_names = True
name_language[lang].append(v)
if not have_qualified_names and len(regional_langs) <= 1 and 'name' in value and len(valid_languages) == 1:
name_language[top_lang].append(value['name'])
for k, v in name_language.iteritems():
for s in v:
s = s.strip()
if not s:
continue
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'toponyms'
i += 1
f.close()
def build_address_training_data(langauge_rtree, infile, out_dir, format=False):
'''
Creates training set similar to the ways data but using addr:street tags instead.
These may be slightly closer to what we'd see in real live addresses, containing
variations, some abbreviations (although this is discouraged in OSM), etc.
Example record:
eu es Errebal kalea
'''
i = 0
f = open(os.path.join(out_dir, ADDRESS_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile):
country, street_language = get_language_names(language_rtree, key, value, tag_prefix='addr:street')
if not street_language:
continue
for k, v in street_language.iteritems():
for s in v:
s = s.strip()
if not s:
continue
if k in languages:
writer.writerow((k, country, tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'streets'
i += 1
f.close()
VENUE_LANGUAGE_DATA_FILENAME = 'names_by_language.tsv'
def build_venue_training_data(language_rtree, infile, out_dir):
i = 0
f = open(os.path.join(out_dir, VENUE_LANGUAGE_DATA_FILENAME), 'w')
writer = csv.writer(f, 'tsv_no_quote')
for key, value, deps in parse_osm(infile):
country, name_language = get_language_names(language_rtree, key, value, tag_prefix='name')
if not name_language:
continue
venue_type = None
for key in (u'amenity', u'building'):
amenity = value.get(key, u'').strip()
if amenity in ('yes', 'y'):
continue
if amenity:
venue_type = u':'.join([key, amenity])
break
if venue_type is None:
continue
for k, v in name_language.iteritems():
for s in v:
s = s.strip()
if k in languages:
writer.writerow((k, country, safe_encode(venue_type), tsv_string(s)))
if i % 1000 == 0 and i > 0:
print 'did', i, 'venues'
i += 1
f.close()
if __name__ == '__main__':
# Handle argument parsing here
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--streets-file',
help='Path to planet-ways.osm')
parser.add_argument('-a', '--address-file',
help='Path to planet-addresses.osm')
parser.add_argument('-v', '--venues-file',
help='Path to planet-venues.osm')
parser.add_argument('-b', '--borders-file',
help='Path to planet-borders.osm')
parser.add_argument('-f', '--format-only',
action='store_true',
default=False,
help='Save formatted addresses (slow)')
parser.add_argument('-u', '--untagged',
action='store_true',
default=False,
help='Save untagged formatted addresses (slow)')
parser.add_argument('-l', '--limited-addresses',
action='store_true',
default=False,
help='Save formatted addresses without house names or country (slow)')
parser.add_argument('-t', '--temp-dir',
default=tempfile.gettempdir(),
help='Temp directory to use')
parser.add_argument('-g', '--language-rtree-dir',
required=True,
help='Language RTree directory')
parser.add_argument('-r', '--rtree-dir',
default=None,
help='OSM reverse geocoder RTree directory')
parser.add_argument('-q', '--quattroshapes-rtree-dir',
default=None,
help='Quattroshapes reverse geocoder RTree directory')
parser.add_argument('-n', '--neighborhoods-rtree-dir',
default=None,
help='Neighborhoods reverse geocoder RTree directory')
parser.add_argument('-o', '--out-dir',
default=os.getcwd(),
help='Output directory')
args = parser.parse_args()
init_country_names()
init_languages()
language_rtree = LanguagePolygonIndex.load(args.language_rtree_dir)
osm_rtree = None
if args.rtree_dir:
osm_rtree = OSMReverseGeocoder.load(args.rtree_dir)
neighborhoods_rtree = None
if args.neighborhoods_rtree_dir:
neighborhoods_rtree = NeighborhoodReverseGeocoder.load(args.neighborhoods_rtree_dir)
street_types_gazetteer.configure()
# Can parallelize
if args.streets_file:
build_ways_training_data(language_rtree, args.streets_file, args.out_dir)
if args.borders_file:
build_toponym_training_data(language_rtree, args.borders_file, args.out_dir)
if args.address_file and not args.format_only and not args.limited_addresses:
build_address_training_data(language_rtree, args.address_file, args.out_dir)
elif args.address_file and osm_rtree is None:
parser.error('--rtree-dir required for formatted addresses')
if args.address_file and args.format_only:
build_address_format_training_data(osm_rtree, language_rtree, neighborhoods_rtree, args.address_file, args.out_dir, tag_components=not args.untagged)
if args.address_file and args.limited_addresses:
build_address_format_training_data_limited(osm_rtree, language_rtree, neighborhoods_rtree, args.address_file, args.out_dir)
if args.venues_file:
build_venue_training_data(language_rtree, args.venues_file, args.out_dir)