Files
libpostal/scripts/geodata/address_expansions/equivalence.py

57 lines
1.7 KiB
Python

import random
import re
import six
from itertools import izip
from geodata.address_expansions.gazetteers import *
from geodata.encoding import safe_decode, safe_encode
from geodata.text.normalize import normalized_tokens
from geodata.text.tokenize import tokenize_raw, token_types
from geodata.text.utils import non_breaking_dash_regex
def canonicals_for_language(data, language):
canonicals = set()
for d in data:
lang, dictionary, is_canonical, canonical = d.split(six.b('|'))
if language is None or lang == language:
canonicals.add(canonical)
return canonicals
def equivalent(s1, s2, gazetteer, language):
'''
Address/place equivalence
-------------------------
OSM discourages abbreviations, but to make our training data map better
to real-world input, we can safely replace the canonical phrase with an
abbreviated version and retain the meaning of the words
'''
tokens_s1 = normalized_tokens(s1)
tokens_s2 = normalized_tokens(s2)
abbreviated_s1 = list(abbreviations_gazetteer.filter(tokens_s1))
abbreviated_s2 = list(abbreviations_gazetteer.filter(tokens_s2))
if len(abbreviated_s1) != len(abbreviated_s2):
return False
for ((t1, c1, l1, d1), (t2, c2, l2, d2)) in izip(abbreviated_s1, abbreviated_s2):
if c1 != token_types.PHRASE and c2 != token_types.PHRASE:
if t1 != t2:
return False
elif c2 == token_types.PHRASE and c2 == token_types.PHRASE:
canonicals_s1 = canonicals_for_language(d1, language)
canonicals_s2 = canonicals_for_language(d2, language)
if not canonicals_s1 & canonicals_s2:
return False
else:
return False
return True