#include "crf_trainer_averaged_perceptron.h" void crf_averaged_perceptron_trainer_destroy(crf_averaged_perceptron_trainer_t *self) { if (self == NULL) return; uint32_t feature_id; khash_t(class_weights) *weights; if (self->weights != NULL) { kh_foreach(self->weights, feature_id, weights, { if (weights != NULL) { kh_destroy(class_weights, weights); } }) kh_destroy(feature_class_weights, self->weights); } khash_t(prev_tag_class_weights) *prev_tag_weights; if (self->prev_tag_weights != NULL) { kh_foreach(self->prev_tag_weights, feature_id, prev_tag_weights, { if (prev_tag_weights != NULL) { kh_destroy(prev_tag_class_weights, prev_tag_weights); } }) kh_destroy(feature_prev_tag_class_weights, self->prev_tag_weights); } if (self->trans_weights != NULL) { kh_destroy(prev_tag_class_weights, self->trans_weights); } if (self->update_counts != NULL) { uint64_array_destroy(self->update_counts); } if (self->prev_tag_update_counts != NULL) { uint64_array_destroy(self->prev_tag_update_counts); } if (self->sequence_features != NULL) { cstring_array_destroy(self->sequence_features); } if (self->sequence_features_indptr != NULL) { uint32_array_destroy(self->sequence_features_indptr); } if (self->sequence_prev_tag_features != NULL) { cstring_array_destroy(self->sequence_prev_tag_features); } if (self->sequence_prev_tag_features_indptr != NULL) { uint32_array_destroy(self->sequence_prev_tag_features_indptr); } if (self->label_ids != NULL) { uint32_array_destroy(self->label_ids); } if (self->viterbi != NULL) { uint32_array_destroy(self->viterbi); } if (self->base_trainer != NULL) { crf_trainer_destroy(self->base_trainer); } free(self); } crf_averaged_perceptron_trainer_t *crf_averaged_perceptron_trainer_new(size_t num_classes, size_t min_updates) { crf_averaged_perceptron_trainer_t *self = calloc(1, sizeof(crf_averaged_perceptron_trainer_t)); if (self == NULL) return NULL; log_info("num_classes %zu\n", num_classes); self->num_updates = 0; self->num_errors = 0; self->iterations = 0; self->min_updates = min_updates; self->base_trainer = crf_trainer_new(num_classes); if (self->base_trainer == NULL) { goto exit_trainer_created; } self->weights = kh_init(feature_class_weights); if (self->weights == NULL) { goto exit_trainer_created; } self->prev_tag_weights = kh_init(feature_prev_tag_class_weights); if (self->prev_tag_weights == NULL) { goto exit_trainer_created; } self->trans_weights = kh_init(prev_tag_class_weights); if (self->trans_weights == NULL) { goto exit_trainer_created; } self->update_counts = uint64_array_new(); if (self->update_counts == NULL) { goto exit_trainer_created; } self->prev_tag_update_counts = uint64_array_new(); if (self->prev_tag_update_counts == NULL) { goto exit_trainer_created; } self->sequence_features = cstring_array_new(); if (self->sequence_features == NULL) { goto exit_trainer_created; } self->sequence_features_indptr = uint32_array_new(); if (self->sequence_features_indptr == NULL) { goto exit_trainer_created; } self->sequence_prev_tag_features = cstring_array_new(); if (self->sequence_prev_tag_features == NULL) { goto exit_trainer_created; } self->sequence_prev_tag_features_indptr = uint32_array_new(); if (self->sequence_prev_tag_features_indptr == NULL) { goto exit_trainer_created; } self->label_ids = uint32_array_new(); if (self->label_ids == NULL) { goto exit_trainer_created; } self->viterbi = uint32_array_new(); if (self->viterbi == NULL) { goto exit_trainer_created; } return self; exit_trainer_created: crf_averaged_perceptron_trainer_destroy(self); return NULL; } static inline uint32_t tag_bigram_class_id(crf_averaged_perceptron_trainer_t *self, tag_bigram_t tag_bigram) { return tag_bigram.prev_class_id * self->base_trainer->num_classes + tag_bigram.class_id; } khash_t(class_weights) *crf_averaged_perceptron_trainer_get_class_weights(crf_averaged_perceptron_trainer_t *self, uint32_t feature_id, bool add_if_missing) { khiter_t k; k = kh_get(feature_class_weights, self->weights, feature_id); if (k != kh_end(self->weights)) { return kh_value(self->weights, k); } else if (add_if_missing) { khash_t(class_weights) *weights = kh_init(class_weights); int ret; k = kh_put(feature_class_weights, self->weights, feature_id, &ret); if (ret < 0) { kh_destroy(class_weights, weights); return NULL; } kh_value(self->weights, k) = weights; return weights; } return NULL; } khash_t(prev_tag_class_weights) *crf_averaged_perceptron_trainer_get_prev_tag_class_weights(crf_averaged_perceptron_trainer_t *self, uint32_t feature_id, bool add_if_missing) { khiter_t k; k = kh_get(feature_prev_tag_class_weights, self->prev_tag_weights, feature_id); if (k != kh_end(self->prev_tag_weights)) { return kh_value(self->prev_tag_weights, k); } else if (add_if_missing) { khash_t(prev_tag_class_weights) *weights = kh_init(prev_tag_class_weights); int ret; k = kh_put(feature_prev_tag_class_weights, self->prev_tag_weights, feature_id, &ret); if (ret < 0) { kh_destroy(prev_tag_class_weights, weights); return NULL; } kh_value(self->prev_tag_weights, k) = weights; return weights; } return NULL; } static inline bool crf_averaged_perceptron_trainer_update_weight(khash_t(class_weights) *weights, uint64_t iter, uint32_t class_id, double value) { class_weight_t weight = NULL_WEIGHT; khiter_t k; k = kh_get(class_weights, weights, class_id); if (k != kh_end(weights)) { weight = kh_value(weights, k); } weight.total += (iter - weight.last_updated) * weight.value; weight.last_updated = iter; weight.value += value; int ret; k = kh_put(class_weights, weights, class_id, &ret); if (ret < 0) return false; kh_value(weights, k) = weight; return true; } static inline bool crf_averaged_perceptron_trainer_update_prev_tag_weight(khash_t(prev_tag_class_weights) *weights, uint64_t iter, uint32_t prev_class_id, uint32_t class_id, double value) { class_weight_t weight = NULL_WEIGHT; tag_bigram_t tag_bigram; tag_bigram.prev_class_id = prev_class_id; tag_bigram.class_id = class_id; uint64_t key = tag_bigram.value; khiter_t k; k = kh_get(prev_tag_class_weights, weights, key); if (k != kh_end(weights)) { weight = kh_value(weights, k); } weight.total += (iter - weight.last_updated) * weight.value; weight.last_updated = iter; weight.value += value; int ret; k = kh_put(prev_tag_class_weights, weights, key, &ret); if (ret < 0) return false; kh_value(weights, k) = weight; return true; } static inline bool crf_averaged_perceptron_trainer_update_feature(crf_averaged_perceptron_trainer_t *self, uint32_t feature_id, uint32_t guess, uint32_t truth, double value) { bool add_if_missing = true; khash_t(class_weights) *weights = crf_averaged_perceptron_trainer_get_class_weights(self, feature_id, add_if_missing); if (weights == NULL) { return false; } uint64_t updates = self->num_updates; if (!crf_averaged_perceptron_trainer_update_weight(weights, updates, guess, -1.0 * value) || !crf_averaged_perceptron_trainer_update_weight(weights, updates, truth, value)) { return false; } return true; } static inline bool crf_averaged_perceptron_trainer_update_prev_tag_feature(crf_averaged_perceptron_trainer_t *self, uint32_t feature_id, uint32_t prev_guess, uint32_t prev_truth, uint32_t guess, uint32_t truth, double value) { bool add_if_missing = true; khash_t(prev_tag_class_weights) *weights = crf_averaged_perceptron_trainer_get_prev_tag_class_weights(self, feature_id, add_if_missing); if (weights == NULL) { return false; } uint64_t updates = self->num_updates; if (!crf_averaged_perceptron_trainer_update_prev_tag_weight(weights, updates, prev_guess, guess, -1.0 * value) || !crf_averaged_perceptron_trainer_update_prev_tag_weight(weights, updates, prev_truth, truth, value)) { return false; } return true; } static inline bool crf_averaged_perceptron_trainer_update_trans_feature(crf_averaged_perceptron_trainer_t *self, uint32_t prev_guess, uint32_t prev_truth, uint32_t guess, uint32_t truth, double value) { bool add_if_missing = true; khash_t(prev_tag_class_weights) *weights = self->trans_weights; if (weights == NULL) { return false; } uint64_t updates = self->num_updates; if (!crf_averaged_perceptron_trainer_update_prev_tag_weight(weights, updates, prev_guess, guess, -1.0 * value) || !crf_averaged_perceptron_trainer_update_prev_tag_weight(weights, updates, prev_truth, truth, value)) { return false; } return true; } static inline bool crf_averaged_perceptron_trainer_cache_features(crf_averaged_perceptron_trainer_t *self, cstring_array *features) { size_t i; char *feature; uint32_t feature_id; cstring_array_foreach(features, i, feature, { cstring_array_add_string(self->sequence_features, feature); }) size_t num_strings = cstring_array_num_strings(self->sequence_features); uint32_array_push(self->sequence_features_indptr, num_strings); return true; } static inline bool crf_averaged_perceptron_trainer_cache_prev_tag_features(crf_averaged_perceptron_trainer_t *self, cstring_array *features) { size_t i; char *feature; uint32_t feature_id; cstring_array_foreach(features, i, feature, { cstring_array_add_string(self->sequence_prev_tag_features, feature); }) size_t num_strings = cstring_array_num_strings(self->sequence_prev_tag_features); uint32_array_push(self->sequence_prev_tag_features_indptr, num_strings); return true; } static bool crf_averaged_perceptron_trainer_state_score(crf_averaged_perceptron_trainer_t *self) { if (self == NULL || self->base_trainer == NULL || self->sequence_features == NULL || self->sequence_features_indptr == NULL) { return false; } crf_context_t *context = self->base_trainer->context; uint32_t class_id; class_weight_t weight; cstring_array *sequence_features = self->sequence_features; uint64_t *update_counts = self->update_counts->a; size_t num_tokens = self->sequence_features_indptr->n - 1; uint32_t *indptr = self->sequence_features_indptr->a; for (size_t t = 0; t < num_tokens; t++) { uint32_t idx = indptr[t]; uint32_t next_start = indptr[t + 1]; double *scores = state_score(context, t); for (uint32_t j = idx; j < next_start; j++) { char *feature = cstring_array_get_string(sequence_features, j); uint32_t feature_id; if (!crf_trainer_get_feature_id(self->base_trainer, feature, &feature_id)) { continue; } uint64_t update_count = update_counts[feature_id]; bool keep_feature = update_count >= self->min_updates; if (keep_feature) { bool add_if_missing = false; khash_t(class_weights) *weights = crf_averaged_perceptron_trainer_get_class_weights(self, feature_id, add_if_missing); if (weights == NULL) { continue; } kh_foreach(weights, class_id, weight, { scores[class_id] += weight.value; }) } } } return true; } static bool crf_averaged_perceptron_trainer_state_trans_score(crf_averaged_perceptron_trainer_t *self) { if (self == NULL || self->base_trainer == NULL || self->sequence_prev_tag_features == NULL || self->sequence_features_indptr == NULL) { return false; } crf_context_t* context = self->base_trainer->context; uint32_t t = 0; uint32_t idx = 0; uint32_t length = 0; bool add_if_missing = false; class_weight_t weight; cstring_array *sequence_features = self->sequence_prev_tag_features; uint64_t *update_counts = self->prev_tag_update_counts->a; size_t num_tokens = self->sequence_prev_tag_features_indptr->n - 1; uint32_t *indptr = self->sequence_prev_tag_features_indptr->a; for (size_t t = 0; t < num_tokens; t++) { uint32_t idx = indptr[t]; uint32_t next_start = indptr[t + 1]; double *scores = state_trans_score_all(context, t); for (uint32_t j = idx; j < next_start; j++) { char *feature = cstring_array_get_string(sequence_features, j); uint32_t feature_id; if (!crf_trainer_get_prev_tag_feature_id(self->base_trainer, feature, &feature_id)) { continue; } uint64_t update_count = update_counts[feature_id]; bool keep_feature = update_count >= self->min_updates; if (keep_feature) { bool add_if_missing = false; khash_t(prev_tag_class_weights) *prev_tag_weights = crf_averaged_perceptron_trainer_get_prev_tag_class_weights(self, feature_id, add_if_missing); if (prev_tag_weights == NULL) { continue; } tag_bigram_t tag_bigram; uint64_t tag_bigram_key; kh_foreach(prev_tag_weights, tag_bigram_key, weight, { tag_bigram.value = tag_bigram_key; uint32_t class_id = tag_bigram_class_id(self, tag_bigram); scores[class_id] += weight.value; }) } } } return true; } static bool crf_averaged_perceptron_trainer_trans_score(crf_averaged_perceptron_trainer_t *self) { if (self == NULL || self->base_trainer == NULL || self->trans_weights == NULL) return false; crf_context_t *context = self->base_trainer->context; khash_t(prev_tag_class_weights) *trans_weights = self->trans_weights; class_weight_t weight; tag_bigram_t tag_bigram; uint64_t tag_bigram_key; double *scores = context->trans->values; kh_foreach(trans_weights, tag_bigram_key, weight, { tag_bigram.value = tag_bigram_key; uint32_t class_id = tag_bigram_class_id(self, tag_bigram); scores[class_id] += weight.value; }) return true; } bool crf_averaged_perceptron_trainer_update(crf_averaged_perceptron_trainer_t *self, double value) { if (self->viterbi == NULL || self->label_ids == NULL || self->label_ids->n != self->viterbi->n || self->sequence_features == NULL || self->sequence_features_indptr == NULL || self->label_ids->n != self->sequence_features_indptr->n - 1 || self->sequence_prev_tag_features == NULL || self->sequence_prev_tag_features_indptr == NULL || self->label_ids->n != self->sequence_prev_tag_features_indptr->n - 1 || self->update_counts == NULL || self->prev_tag_update_counts == NULL) { log_error("Something was NULL\n"); return false; } uint32_t t, idx, length; bool add_if_missing = false; uint32_t *viterbi = self->viterbi->a; uint32_t *labels = self->label_ids->a; uint32_t truth, guess; size_t num_tokens = self->sequence_features_indptr->n - 1; uint32_t *indptr = self->sequence_features_indptr->a; cstring_array *sequence_features = self->sequence_features; for (size_t t = 0; t < num_tokens; t++) { truth = labels[t]; guess = viterbi[t]; if (guess != truth) { uint32_t idx = indptr[t]; uint32_t next_start = indptr[t + 1]; for (uint32_t j = idx; j < next_start; j++) { char *feature = cstring_array_get_string(sequence_features, j); if (feature == NULL) { log_error("feature NULL, j = %u, len = %zu\n", j, cstring_array_num_strings(sequence_features)); return false; } uint32_t feature_id; bool exists; if (!crf_trainer_hash_feature_to_id_exists(self->base_trainer, feature, &feature_id, &exists)) { return false; } if (!crf_averaged_perceptron_trainer_update_feature(self, feature_id, guess, truth, value)) { return false; } if (exists) { self->update_counts->a[feature_id]++; } else { uint64_array_push(self->update_counts, 1); } } // This is shared between the state and state-trans features, only increment once self->num_updates++; self->num_errors++; } } uint32_t prev_truth, prev_guess; uint64_t *prev_tag_update_counts = self->prev_tag_update_counts->a; sequence_features = self->sequence_prev_tag_features; num_tokens = self->sequence_prev_tag_features_indptr->n - 1; indptr = self->sequence_prev_tag_features_indptr->a; for (size_t t = 0; t < num_tokens; t++) { truth = labels[t]; guess = viterbi[t]; if (t > 0 && (guess != truth || prev_guess != prev_truth)) { uint32_t idx = indptr[t]; uint32_t next_start = indptr[t + 1]; for (uint32_t j = idx; j < next_start; j++) { char *feature = cstring_array_get_string(sequence_features, j); if (feature == NULL) { log_error("feature NULL, j = %u, len = %zu\n", j, cstring_array_num_strings(sequence_features)); return false; } uint32_t feature_id; bool exists; if (!crf_trainer_hash_prev_tag_feature_to_id_exists(self->base_trainer, feature, &feature_id, &exists)) { return false; } if (!crf_averaged_perceptron_trainer_update_prev_tag_feature(self, feature_id, prev_guess, prev_truth, guess, truth, value)) { return false; } if (exists) { self->prev_tag_update_counts->a[feature_id]++; } else { uint64_array_push(self->prev_tag_update_counts, 1); } } } prev_truth = truth; prev_guess = guess; } size_t sequence_len = self->label_ids->n; for (t = 0; t < sequence_len; t++) { truth = labels[t]; guess = viterbi[t]; if (t > 0 && (guess != truth || prev_guess != prev_truth)) { if (!crf_averaged_perceptron_trainer_update_trans_feature(self, prev_guess, prev_truth, guess, truth, value)) { return false; } } prev_truth = truth; prev_guess = guess; } return true; } bool crf_averaged_perceptron_trainer_train_example(crf_averaged_perceptron_trainer_t *self, void *tagger, void *tagger_context, cstring_array *features, cstring_array *prev_tag_features, tagger_feature_function feature_function, tokenized_string_t *tokenized, cstring_array *labels) { if (self == NULL || self->base_trainer == NULL) return false; size_t num_tokens = tokenized->tokens->n; if (cstring_array_num_strings(labels) != num_tokens) { return false; } if (num_tokens == 0) { return true; } uint32_array_clear(self->sequence_features_indptr); uint32_array_push(self->sequence_features_indptr, 0); cstring_array_clear(self->sequence_features); uint32_array_clear(self->sequence_prev_tag_features_indptr); uint32_array_push(self->sequence_prev_tag_features_indptr, 0); cstring_array_clear(self->sequence_prev_tag_features); crf_context_t *crf_context = self->base_trainer->context; if (!uint32_array_resize(self->label_ids, num_tokens)) { log_error("Resizing label_ids failed\n"); return false; } uint32_array_clear(self->label_ids); if (!crf_context_set_num_items(crf_context, num_tokens)) { return false; } crf_context_reset(crf_context, CRF_CONTEXT_RESET_ALL); bool add_if_missing = true; for (uint32_t i = 0; i < num_tokens; i++) { cstring_array_clear(features); cstring_array_clear(prev_tag_features); if (!feature_function(tagger, tagger_context, tokenized, i)) { log_error("Could not add address parser features\n"); return false; } char *label = cstring_array_get_string(labels, i); if (label == NULL) { log_error("label is NULL\n"); } uint32_t class_id; if (!crf_trainer_get_class_id(self->base_trainer, label, &class_id, add_if_missing)) { log_error("Get class id failed\n"); return false; } uint32_array_push(self->label_ids, class_id); if (!crf_averaged_perceptron_trainer_cache_features(self, features) || !crf_averaged_perceptron_trainer_cache_prev_tag_features(self, prev_tag_features)) { log_error("Caching features failed\n"); return false; } } if (!crf_averaged_perceptron_trainer_state_score(self)) { log_error("Error in state score\n"); return false; } if (!crf_averaged_perceptron_trainer_state_trans_score(self)) { log_error("Error in state_trans score\n"); return false; } if (!crf_averaged_perceptron_trainer_trans_score(self)) { log_error("Error in trans score\n"); return false; } if (!uint32_array_resize_fixed(self->viterbi, num_tokens)) { log_error("Error resizing Viterbi, num_tokens=%zu\n", num_tokens); return false; } uint32_t *viterbi = self->viterbi->a; double viterbi_score = crf_context_viterbi(crf_context, viterbi); if (self->viterbi->n != num_tokens || self->label_ids->n != num_tokens) { log_error("self->viterbi->n=%zu, num_tokens=%zu, self->label_ids->n=%zu\n", self->viterbi->n, num_tokens, self->label_ids->n); return false; } uint32_t *true_labels = self->label_ids->a; for (uint32_t i = 0; i < num_tokens; i++) { uint32_t truth = true_labels[i]; // Technically this is supposed to be updated all at once uint32_t guess = viterbi[i]; if (guess != truth) { if (!crf_averaged_perceptron_trainer_update(self, 1.0)) { log_error("Error in crf_averaged_perceptron_trainer_update\n"); return false; } break; } } return true; } crf_t *crf_averaged_perceptron_trainer_finalize(crf_averaged_perceptron_trainer_t *self) { if (self == NULL || self->base_trainer == NULL || self->base_trainer->num_classes == 0) { log_error("Something was NULL\n"); return NULL; } uint32_t class_id; class_weight_t weight; khiter_t k; size_t num_features = kh_size(self->base_trainer->features); sparse_matrix_t *averaged_weights = sparse_matrix_new(); if (averaged_weights == NULL) { log_error("Error creating averaged_weights\n"); return NULL; } log_info("Finalizing trainer, num_features=%zu\n", num_features); char **feature_keys = malloc(sizeof(char *) * num_features); uint32_t feature_id; const char *feature; kh_foreach(self->base_trainer->features, feature, feature_id, { if (feature_id >= num_features) { free(feature_keys); log_error("Error populating feature_keys, feature_id=%u, num_features=%zu\n", feature_id, num_features); return NULL; } feature_keys[feature_id] = (char *)feature; }) khash_t(str_uint32) *features = self->base_trainer->features; khash_t(str_uint32) *prev_tag_features = self->base_trainer->prev_tag_features; uint64_t updates = self->num_updates; khash_t(class_weights) *weights; uint32_t next_feature_id = 0; uint64_t *update_counts = self->update_counts->a; log_info("Pruning weights with < min_updates = %" PRIu64 "\n", self->min_updates); for (feature_id = 0; feature_id < num_features; feature_id++) { k = kh_get(feature_class_weights, self->weights, feature_id); if (k == kh_end(self->weights)) { sparse_matrix_destroy(averaged_weights); free(feature_keys); log_error("Error in kh_get on self->weights, feature_id=%u, num_features=%zu\n", feature_id, num_features); return NULL; } weights = kh_value(self->weights, k); uint32_t class_id; uint64_t update_count = update_counts[feature_id]; bool keep_feature = update_count >= self->min_updates; uint32_t new_feature_id = next_feature_id; if (keep_feature) { kh_foreach(weights, class_id, weight, { weight.total += (updates - weight.last_updated) * weight.value; double value = weight.total / updates; sparse_matrix_append(averaged_weights, class_id, value); }) sparse_matrix_finalize_row(averaged_weights); next_feature_id++; } if (!keep_feature || new_feature_id != feature_id) { feature = feature_keys[feature_id]; k = kh_get(str_uint32, features, feature); if (k != kh_end(features)) { if (keep_feature) { kh_value(features, k) = new_feature_id; } else { kh_del(str_uint32, features, k); } } else { log_error("Error in kh_get on features\n"); crf_averaged_perceptron_trainer_destroy(self); free(feature_keys); return NULL; } } } free(feature_keys); num_features = kh_size(features); log_info("After pruning, num_features=%zu\n", num_features); sparse_matrix_t *averaged_state_trans_weights = sparse_matrix_new(); if (averaged_state_trans_weights == NULL) { log_error("Error creating averaged_state_trans_weights\n"); return NULL; } size_t num_prev_tag_features = kh_size(prev_tag_features); char **prev_tag_feature_keys = malloc(sizeof(char *) * num_prev_tag_features); kh_foreach(prev_tag_features, feature, feature_id, { if (feature_id >= num_prev_tag_features) { free(prev_tag_feature_keys); log_error("Error populating prev_tag_feature_keys\n"); return NULL; } prev_tag_feature_keys[feature_id] = (char *)feature; }) khash_t(prev_tag_class_weights) *prev_tag_weights; log_info("Pruning previous tag features, num_prev_tag_features=%zu\n", num_prev_tag_features); uint32_t next_prev_tag_feature_id = 0; uint64_t *prev_tag_update_counts = self->prev_tag_update_counts->a; tag_bigram_t tag_bigram; uint64_t tag_bigram_key; for (feature_id = 0; feature_id < num_prev_tag_features; feature_id++) { k = kh_get(feature_prev_tag_class_weights, self->prev_tag_weights, feature_id); if (k == kh_end(self->prev_tag_weights)) { sparse_matrix_destroy(averaged_state_trans_weights); free(prev_tag_feature_keys); log_error("Error in kh_get self->prev_tag_weights\n"); return NULL; } prev_tag_weights = kh_value(self->prev_tag_weights, k); uint64_t update_count = prev_tag_update_counts[feature_id]; bool keep_feature = update_count >= self->min_updates; uint32_t new_feature_id = next_prev_tag_feature_id; if (keep_feature) { kh_foreach(prev_tag_weights, tag_bigram_key, weight, { tag_bigram.value = tag_bigram_key; weight.total += (updates - weight.last_updated) * weight.value; double value = weight.total / updates; class_id = tag_bigram_class_id(self, tag_bigram); sparse_matrix_append(averaged_state_trans_weights, class_id, value); }) sparse_matrix_finalize_row(averaged_state_trans_weights); next_prev_tag_feature_id++; } if (!keep_feature || new_feature_id != feature_id) { feature = prev_tag_feature_keys[feature_id]; k = kh_get(str_uint32, prev_tag_features, feature); if (k != kh_end(prev_tag_features)) { if (keep_feature) { kh_value(prev_tag_features, k) = new_feature_id; } else { kh_del(str_uint32, prev_tag_features, k); } } else { log_error("Error in kh_get on prev_tag_features\n"); crf_averaged_perceptron_trainer_destroy(self); free(prev_tag_feature_keys); return NULL; } } } free(prev_tag_feature_keys); num_prev_tag_features = kh_size(prev_tag_features); log_info("After pruning, num_prev_tag_features=%zu\n", num_prev_tag_features); size_t num_classes = self->base_trainer->num_classes; double_matrix_t *averaged_trans_weights = double_matrix_new_zeros(num_classes, num_classes); if (averaged_trans_weights == NULL) { log_error("Error creating double matrix for transition weights\n"); return NULL; } double *trans = averaged_trans_weights->values; kh_foreach(self->trans_weights, tag_bigram_key, weight, { tag_bigram.value = tag_bigram_key; weight.total += (updates - weight.last_updated) * weight.value; double value = weight.total / updates; class_id = tag_bigram_class_id(self, tag_bigram); trans[class_id] = value; }) crf_t *crf = malloc(sizeof(crf_t)); crf->num_classes = num_classes; crf->weights = averaged_weights; crf->state_trans_weights = averaged_state_trans_weights; crf->trans_weights = averaged_trans_weights; crf->classes = self->base_trainer->class_strings; self->base_trainer->class_strings = NULL; trie_t *state_features = trie_new_from_hash(features); if (state_features == NULL) { crf_averaged_perceptron_trainer_destroy(self); log_error("Error creating state_features\n"); return NULL; } crf->state_features = state_features; trie_t *state_trans_features = trie_new_from_hash(prev_tag_features); if (state_trans_features == NULL) { crf_averaged_perceptron_trainer_destroy(self); log_error("Error creating state_trans_features\n"); return NULL; } crf->state_trans_features = state_trans_features; crf->viterbi = uint32_array_new(); crf->context = crf_context_new(CRF_CONTEXT_VITERBI | CRF_CONTEXT_MARGINALS, num_classes, CRF_CONTEXT_DEFAULT_NUM_ITEMS); crf_averaged_perceptron_trainer_destroy(self); return crf; }