#include #include #include #include #include #include "log/log.h" #include "address_dictionary.h" #include "cartesian_product.h" #include "collections.h" #include "language_classifier.h" #include "language_classifier_io.h" #include "logistic_regression.h" #include "logistic_regression_trainer.h" #include "shuffle.h" #include "sparse_matrix.h" #include "sparse_matrix_utils.h" #include "stochastic_gradient_descent.h" #include "transliterate.h" #define LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD 3.0 #define LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD 100 #define LOG_BATCH_INTERVAL 10 #define COMPUTE_COST_INTERVAL 100 #define COMPUTE_CV_INTERVAL 1000 #define LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES 50 // Hyperparameters for stochastic gradient descent static double GAMMA_SCHEDULE[] = {0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}; static const size_t GAMMA_SCHEDULE_SIZE = sizeof(GAMMA_SCHEDULE) / sizeof(double); #define DEFAULT_GAMMA_0 10.0 #define REGULARIZATION_SCHEDULE {0.0, 1e-7, 1e-6, 1e-5, 1e-4, 0.001, 0.01, 0.1, \ 0.2, 0.5, 1.0, 2.0, 5.0, 10.0} static double L2_SCHEDULE[] = REGULARIZATION_SCHEDULE; static const size_t L2_SCHEDULE_SIZE = sizeof(L2_SCHEDULE) / sizeof(double); static double L1_SCHEDULE[] = REGULARIZATION_SCHEDULE; static const size_t L1_SCHEDULE_SIZE = sizeof(L1_SCHEDULE) / sizeof(double); #define DEFAULT_L2 1e-6 #define DEFAULT_L1 1e-4 // Hyperparameters for FTRL-Proximal static double ALPHA_SCHEDULE[] = {0.01, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}; static const size_t ALPHA_SCHEDULE_SIZE = sizeof(ALPHA_SCHEDULE) / sizeof(double); static double DEFAULT_BETA = 1.0; #define DEFAULT_ALPHA 10.0 #define TRAIN_EPOCHS 10 #define HYPERPARAMETER_EPOCHS 5 logistic_regression_trainer_t *language_classifier_init_params(char *filename, double feature_count_threshold, uint32_t label_count_threshold, size_t minibatch_size, logistic_regression_optimizer_type optim_type, regularization_type_t reg_type) { if (filename == NULL) { log_error("Filename was NULL\n"); return NULL; } language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename); language_classifier_minibatch_t *minibatch; khash_t(str_double) *feature_counts = kh_init(str_double); khash_t(str_uint32) *label_counts = kh_init(str_uint32); size_t num_batches = 0; // Count features and labels while ((minibatch = language_classifier_data_set_get_minibatch_with_size(data_set, NULL, minibatch_size)) != NULL) { if (!count_labels_minibatch(label_counts, minibatch->labels)) { log_error("Counting minibatch labeles failed\n"); exit(EXIT_FAILURE); } if (num_batches % LOG_BATCH_INTERVAL == 0 && num_batches > 0) { log_info("Counting labels, did %zu examples\n", num_batches * minibatch_size); } num_batches++; language_classifier_minibatch_destroy(minibatch); } log_info("Done counting labels\n"); language_classifier_data_set_destroy(data_set); data_set = language_classifier_data_set_init(filename); num_batches = 0; khash_t(str_uint32) *label_ids = select_labels_threshold(label_counts, label_count_threshold); if (label_ids == NULL) { log_error("Error creating labels\n"); exit(EXIT_FAILURE); } size_t num_labels = kh_size(label_ids); log_info("num_labels=%zu\n", num_labels); // Don't free the label strings as the pointers are reused in select_labels_threshold kh_destroy(str_uint32, label_counts); // Run through the training set again, counting only features which co-occur with valid classes while ((minibatch = language_classifier_data_set_get_minibatch(data_set, label_ids)) != NULL) { if (!count_features_minibatch(feature_counts, minibatch->features, true)){ log_error("Counting minibatch features failed\n"); exit(EXIT_FAILURE); } if (num_batches % LOG_BATCH_INTERVAL == 0 && num_batches > 0) { log_info("Counting features, did %zu examples\n", num_batches * minibatch_size); } num_batches++; language_classifier_minibatch_destroy(minibatch); } log_info("Done counting features, finalizing\n"); language_classifier_data_set_destroy(data_set); // Discard rare features using a count threshold (can be 1) and convert them to trie trie_t *feature_ids = select_features_threshold(feature_counts, feature_count_threshold); if (feature_ids == NULL) { log_error("Error creating features trie\n"); exit(EXIT_FAILURE); } // Need to free the keys here as trie uses its own memory const char *key; kh_foreach_key(feature_counts, key, { free((char *)key); }) kh_destroy(str_double, feature_counts); logistic_regression_trainer_t *trainer = NULL; if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) { bool fit_intercept = true; double default_lambda = 0.0; if (reg_type == REGULARIZATION_L2){ default_lambda = DEFAULT_L2; } else if (reg_type == REGULARIZATION_L1) { default_lambda = DEFAULT_L1; } trainer = logistic_regression_trainer_init_sgd(feature_ids, label_ids, fit_intercept, reg_type, default_lambda, DEFAULT_GAMMA_0); } else if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) { trainer = logistic_regression_trainer_init_ftrl(feature_ids, label_ids, DEFAULT_ALPHA, DEFAULT_BETA, DEFAULT_L1, DEFAULT_L2); } return trainer; } logistic_regression_trainer_t *language_classifier_init_optim_reg(char *filename, size_t minibatch_size, logistic_regression_optimizer_type optim_type, regularization_type_t reg_type) { return language_classifier_init_params(filename, LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD, LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD, minibatch_size, optim_type, reg_type); } logistic_regression_trainer_t *language_classifier_init_sgd_reg(char *filename, size_t minibatch_size, regularization_type_t reg_type) { return language_classifier_init_params(filename, LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD, LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD, minibatch_size, LOGISTIC_REGRESSION_OPTIMIZER_SGD, reg_type); } logistic_regression_trainer_t *language_classifier_init_ftrl(char *filename, size_t minibatch_size) { return language_classifier_init_params(filename, LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD, LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD, minibatch_size, LOGISTIC_REGRESSION_OPTIMIZER_FTRL, REGULARIZATION_NONE); } double compute_cv_accuracy(logistic_regression_trainer_t *trainer, char *filename) { language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename); language_classifier_minibatch_t *minibatch; uint32_t correct = 0; uint32_t total = 0; double_matrix_t *p_y = double_matrix_new_zeros(LANGUAGE_CLASSIFIER_DEFAULT_BATCH_SIZE, trainer->num_labels); while ((minibatch = language_classifier_data_set_get_minibatch(data_set, trainer->label_ids)) != NULL) { sparse_matrix_t *x = feature_matrix(trainer->feature_ids, minibatch->features); uint32_array *y = label_vector(trainer->label_ids, minibatch->labels); if (!double_matrix_resize_aligned(p_y, x->m, trainer->num_labels, 16)) { log_error("resize p_y failed\n"); exit(EXIT_FAILURE); } double_matrix_zero(p_y); if (!sparse_matrix_add_unique_columns_alias(x, trainer->unique_columns, trainer->batch_columns)) { log_error("Error adding unique columns\n"); exit(EXIT_FAILURE); } double_matrix_t *theta = logistic_regression_trainer_get_weights(trainer); if (!logistic_regression_model_expectation(theta, x, p_y)) { log_error("Predict cv batch failed\n"); exit(EXIT_FAILURE); } double *row; for (size_t i = 0; i < p_y->m; i++) { row = double_matrix_get_row(p_y, i); int64_t predicted = double_array_argmax(row, p_y->n); if (predicted < 0) { log_error("Error in argmax\n"); exit(EXIT_FAILURE); } uint32_t y_i = y->a[i]; if (y_i == (uint32_t)predicted) { correct++; } total++; } sparse_matrix_destroy(x); uint32_array_destroy(y); language_classifier_minibatch_destroy(minibatch); } language_classifier_data_set_destroy(data_set); double_matrix_destroy(p_y); double accuracy = (double)correct / total; return accuracy; } double compute_total_cost(logistic_regression_trainer_t *trainer, char *filename, ssize_t compute_batches) { language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename); language_classifier_minibatch_t *minibatch; double total_cost = 0.0; size_t num_batches = 0; size_t num_examples = 0; // Need to regularize the weights double_matrix_t *theta = logistic_regression_trainer_get_regularized_weights(trainer); while ((minibatch = language_classifier_data_set_get_minibatch(data_set, trainer->label_ids)) != NULL) { double batch_cost = logistic_regression_trainer_minibatch_cost(trainer, minibatch->features, minibatch->labels); total_cost += batch_cost; num_examples += minibatch->features->n; language_classifier_minibatch_destroy(minibatch); num_batches++; if (compute_batches > 0 && num_batches == (size_t)compute_batches) { break; } } double reg_cost = logistic_regression_trainer_regularization_cost(trainer, num_examples); log_info("cost = %f, reg_cost = %f, m = %zu\n", total_cost, reg_cost, num_examples); total_cost += reg_cost; language_classifier_data_set_destroy(data_set); return total_cost; } bool language_classifier_train_epoch(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, ssize_t train_batches, size_t minibatch_size) { if (filename == NULL) { log_error("Filename was NULL\n"); return false; } #if defined(HAVE_SHUF) || defined(HAVE_GSHUF) log_info("Shuffling\n"); if (!shuffle_file_chunked_size(filename, DEFAULT_SHUFFLE_CHUNK_SIZE)) { log_error("Error in shuffle\n"); logistic_regression_trainer_destroy(trainer); return NULL; } log_info("Shuffle complete\n"); #endif language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename); language_classifier_minibatch_t *minibatch; size_t num_batches = 0; double batch_cost = 0.0; double total_cost = 0.0; double last_cost = 0.0; double train_cost = 0.0; double cv_accuracy = 0.0; while ((minibatch = language_classifier_data_set_get_minibatch_with_size(data_set, trainer->label_ids, minibatch_size)) != NULL) { bool compute_cost = num_batches % COMPUTE_COST_INTERVAL == 0; bool compute_cv = num_batches % COMPUTE_CV_INTERVAL == 0 && num_batches > 0 && cv_filename != NULL; if (num_batches % LOG_BATCH_INTERVAL == 0 && num_batches > 0) { log_info("Epoch %u, doing %zu examples\n", trainer->epochs, num_batches * minibatch_size); } if (compute_cost) { train_cost = logistic_regression_trainer_minibatch_cost_regularized(trainer, minibatch->features, minibatch->labels); log_info("cost = %f\n", train_cost); } if (!logistic_regression_trainer_train_minibatch(trainer, minibatch->features, minibatch->labels)){ log_error("Train batch failed\n"); exit(EXIT_FAILURE); } if (compute_cv) { cv_accuracy = compute_cv_accuracy(trainer, cv_filename); log_info("cv accuracy=%f\n", cv_accuracy); } num_batches++; if (train_batches > 0 && num_batches == (size_t)train_batches) { log_info("Epoch %u, trained %zu examples\n", trainer->epochs, num_batches * minibatch_size); train_cost = logistic_regression_trainer_minibatch_cost_regularized(trainer, minibatch->features, minibatch->labels); log_info("cost = %f\n", train_cost); break; } language_classifier_minibatch_destroy(minibatch); } language_classifier_data_set_destroy(data_set); return true; } static double language_classifier_cv_cost(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, size_t minibatch_size, bool *diverged) { ssize_t cost_batches; char *cost_file; if (cv_filename == NULL) { cost_file = filename; cost_batches = LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES; } else { cost_file = cv_filename; cost_batches = -1; } double initial_cost = compute_total_cost(trainer, cost_file, cost_batches); for (size_t k = 0; k < HYPERPARAMETER_EPOCHS; k++) { trainer->epochs = k; if (!language_classifier_train_epoch(trainer, filename, NULL, LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES, minibatch_size)) { log_error("Error in epoch\n"); logistic_regression_trainer_destroy(trainer); exit(EXIT_FAILURE); } } double final_cost = compute_total_cost(trainer, cost_file, cost_batches); *diverged = final_cost > initial_cost; log_info("final_cost = %f, initial_cost = %f\n", final_cost, initial_cost); return final_cost; } typedef struct language_classifier_sgd_params { double lambda; double gamma_0; } language_classifier_sgd_params_t; typedef struct language_classifier_ftrl_params { double alpha; double lambda1; double lambda2; } language_classifier_ftrl_params_t; VECTOR_INIT(language_classifier_sgd_param_array, language_classifier_sgd_params_t) VECTOR_INIT(language_classifier_ftrl_param_array, language_classifier_ftrl_params_t) /* Uses the one standard-error rule (http://www.stat.cmu.edu/~ryantibs/datamining/lectures/19-val2.pdf) A solution that's better regularized is preferred if it's within one standard error of the solution with the lowest cross-validation error. */ language_classifier_sgd_params_t language_classifier_parameter_sweep_sgd(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, size_t minibatch_size) { double best_cost = DBL_MAX; double default_lambda = 0.0; size_t lambda_schedule_size = 0; double *lambda_schedule = NULL; sgd_trainer_t *sgd = trainer->optimizer.sgd; if (sgd->reg_type == REGULARIZATION_L2) { default_lambda = DEFAULT_L2; lambda_schedule_size = L2_SCHEDULE_SIZE; lambda_schedule = L2_SCHEDULE; } else if (sgd->reg_type == REGULARIZATION_L1) { lambda_schedule_size = L1_SCHEDULE_SIZE; lambda_schedule = L1_SCHEDULE; default_lambda = DEFAULT_L1; } double_array *costs = double_array_new(); language_classifier_sgd_param_array *all_params = language_classifier_sgd_param_array_new(); language_classifier_sgd_params_t best_params = (language_classifier_sgd_params_t){default_lambda, DEFAULT_GAMMA_0}; double cost; language_classifier_sgd_params_t params; cartesian_product_iterator_t *iter = cartesian_product_iterator_new(2, lambda_schedule_size, GAMMA_SCHEDULE_SIZE); for (uint32_t *vals = cartesian_product_iterator_start(iter); !cartesian_product_iterator_done(iter); vals = cartesian_product_iterator_next(iter)) { double lambda = lambda_schedule[vals[0]]; double gamma_0 = GAMMA_SCHEDULE[vals[1]]; params.lambda = lambda, params.gamma_0 = gamma_0; if (!logistic_regression_trainer_reset_params_sgd(trainer, lambda, gamma_0)) { log_error("Error resetting params\n"); logistic_regression_trainer_destroy(trainer); exit(EXIT_FAILURE); } log_info("Optimizing hyperparameters. Trying lambda=%.7f, gamma_0=%f\n", lambda, gamma_0); bool diverged = false; cost = language_classifier_cv_cost(trainer, filename, cv_filename, minibatch_size, &diverged); if (!diverged) { language_classifier_sgd_param_array_push(all_params, params); double_array_push(costs, cost); } else { log_info("Diverged, cost = %f\n", cost); } log_info("Total cost = %f\n", cost); if (cost < best_cost) { log_info("Better than current best parameters: setting lambda=%.7f, gamma_0=%f\n", lambda, gamma_0); best_cost = cost; best_params.lambda = lambda; best_params.gamma_0 = gamma_0; } } size_t num_params = costs->n; if (num_params > 0) { language_classifier_sgd_params_t *param_values = all_params->a; double *cost_values = costs->a; double std_error = double_array_std(cost_values, num_params) / sqrt((double)num_params); double max_cost = best_cost + std_error; log_info("max_cost = %f using the one standard error rule\n", max_cost); for (size_t i = 0; i < num_params; i++) { cost = cost_values[i]; params = param_values[i]; if (cost < max_cost && params.lambda > best_params.lambda) { best_params = params; log_info("cost (%f) < max_cost and better regularized, setting lambda=%.7f, gamma_0=%f\n", cost, params.lambda, params.gamma_0); } } } language_classifier_sgd_param_array_destroy(all_params); double_array_destroy(costs); return best_params; } language_classifier_ftrl_params_t language_classifier_parameter_sweep_ftrl(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, size_t minibatch_size) { double best_cost = DBL_MAX; language_classifier_ftrl_params_t best_params = (language_classifier_ftrl_params_t){DEFAULT_ALPHA, DEFAULT_L1, DEFAULT_L2}; double_array *costs = double_array_new(); language_classifier_ftrl_param_array *all_params = language_classifier_ftrl_param_array_new(); language_classifier_ftrl_params_t params; double cost; cartesian_product_iterator_t *iter = cartesian_product_iterator_new(3, L1_SCHEDULE_SIZE, L2_SCHEDULE_SIZE, ALPHA_SCHEDULE_SIZE); for (uint32_t *vals = cartesian_product_iterator_start(iter); !cartesian_product_iterator_done(iter); vals = cartesian_product_iterator_next(iter)) { double lambda1 = L1_SCHEDULE[vals[0]]; double lambda2 = L2_SCHEDULE[vals[1]]; double alpha = ALPHA_SCHEDULE[vals[2]]; params.lambda1 = lambda1, params.lambda2 = lambda2, params.alpha = alpha; if (!logistic_regression_trainer_reset_params_ftrl(trainer, alpha, DEFAULT_BETA, lambda1, lambda2)) { log_error("Error resetting params\n"); logistic_regression_trainer_destroy(trainer); exit(EXIT_FAILURE); } log_info("Optimizing hyperparameters. Trying lambda1=%.7f, lambda2=%.7f, alpha=%f\n", lambda1, lambda2, alpha); bool diverged = false; cost = language_classifier_cv_cost(trainer, filename, cv_filename, minibatch_size, &diverged); if (!diverged) { language_classifier_ftrl_param_array_push(all_params, params); double_array_push(costs, cost); } else { log_info("Diverged, cost = %f\n", cost); } log_info("Total cost = %f\n", cost); if (cost < best_cost) { log_info("Better than current best parameters: setting lambda1=%.7f, lambda2=%.7f, alpha=%f\n", lambda1, lambda2, alpha); best_cost = cost; best_params.lambda1 = lambda1; best_params.lambda2 = lambda2; best_params.alpha = alpha; } } size_t num_params = costs->n; if (num_params > 0) { language_classifier_ftrl_params_t *param_values = all_params->a; double *cost_values = costs->a; double std_error = double_array_std(cost_values, num_params) / sqrt((double)num_params); double max_cost = best_cost + std_error; log_info("best_cost = %f, std_error = %f, max_cost = %f using the one standard error rule\n", best_cost, std_error, max_cost); for (size_t i = 0; i < num_params; i++) { cost = cost_values[i]; params = param_values[i]; log_info("cost = %f, lambda1 = %f, lambda2 = %f, alpha = %f\n", cost, params.lambda1, params.lambda2, params.alpha); if (cost < max_cost && (params.lambda1 > best_params.lambda1 || double_equals(params.lambda1, best_params.lambda1)) && (params.lambda2 > best_params.lambda2 || double_equals(params.lambda2, best_params.lambda2)) ) { if (double_equals(params.lambda1, best_params.lambda1) && double_equals(params.lambda2, best_params.lambda2) && params.alpha > best_params.alpha) { log_info("cost < max_cost but higher alpha\n"); continue; } best_params = params; log_info("cost (%f) < max_cost and better regularized, setting lambda1=%.7f, lambda2=%.7f alpha=%f\n", cost, params.lambda1, params.lambda2, params.alpha); } } } language_classifier_ftrl_param_array_destroy(all_params); double_array_destroy(costs); return best_params; } static language_classifier_t *trainer_finalize(logistic_regression_trainer_t *trainer, char *test_filename) { if (trainer == NULL) return NULL; log_info("Done training\n"); if (test_filename != NULL) { double test_accuracy = compute_cv_accuracy(trainer, test_filename); log_info("Test accuracy = %f\n", test_accuracy); } language_classifier_t *classifier = language_classifier_new(); if (classifier == NULL) { log_error("Error creating classifier\n"); logistic_regression_trainer_destroy(trainer); return NULL; } // Reassign weights and features to the classifier model // final_weights if (trainer->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) { sgd_trainer_t *sgd_trainer = trainer->optimizer.sgd; if (sgd_trainer->reg_type == REGULARIZATION_L2 || sgd_trainer->reg_type == REGULARIZATION_NONE) { double_matrix_t *weights = logistic_regression_trainer_final_weights(trainer); classifier->weights_type = MATRIX_DENSE; classifier->weights.dense = weights; } else if (sgd_trainer->reg_type == REGULARIZATION_L1) { sparse_matrix_t *sparse_weights = logistic_regression_trainer_final_weights_sparse(trainer); classifier->weights_type = MATRIX_SPARSE; classifier->weights.sparse = sparse_weights; log_info("Weights sparse: %zu rows (m=%u), %" PRIu32 " cols, %zu elements\n", sparse_weights->indptr->n, sparse_weights->m, sparse_weights->n, sparse_weights->data->n); } } else if (trainer->optimizer_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) { sparse_matrix_t *sparse_weights = logistic_regression_trainer_final_weights_sparse(trainer); classifier->weights_type = MATRIX_SPARSE; classifier->weights.sparse = sparse_weights; log_info("Weights sparse: %zu rows (m=%u), %" PRIu32 " cols, %zu elements\n", sparse_weights->indptr->n, sparse_weights->m, sparse_weights->n, sparse_weights->data->n); } classifier->num_features = trainer->num_features; classifier->features = trainer->feature_ids; // Set trainer feature_ids to NULL so it doesn't get destroyed trainer->feature_ids = NULL; size_t num_labels = trainer->num_labels; classifier->num_labels = num_labels; char **strings = malloc(sizeof(char *) * num_labels); const char *label; uint32_t label_id; kh_foreach(trainer->label_ids, label, label_id, { if (label_id >= num_labels) { log_error("label_id %d >= num_labels %zu\n", label_id, num_labels); exit(EXIT_FAILURE); } strings[label_id] = (char *)label; }) classifier->labels = cstring_array_from_strings(strings, num_labels); for (size_t i = 0; i < num_labels; i++) { free(strings[i]); } free(strings); logistic_regression_trainer_destroy(trainer); return classifier; } language_classifier_t *language_classifier_train_sgd(char *filename, char *subset_filename, bool cross_validation_set, char *cv_filename, char *test_filename, uint32_t num_iterations, size_t minibatch_size, regularization_type_t reg_type) { logistic_regression_trainer_t *trainer = language_classifier_init_sgd_reg(filename, minibatch_size, reg_type); language_classifier_sgd_params_t params = language_classifier_parameter_sweep_sgd(trainer, subset_filename, cv_filename, minibatch_size); log_info("Best params: lambda=%f, gamma_0=%f\n", params.lambda, params.gamma_0); if (!logistic_regression_trainer_reset_params_sgd(trainer, params.lambda, params.gamma_0)) { logistic_regression_trainer_destroy(trainer); return NULL; } /* If there's not a distinct cross-validation set, e.g. when training the production model, then the cross validation file is just a subset of the training data and only used for setting the hyperparameters, so ignore it after we're done with the parameter sweep. */ if (!cross_validation_set) { cv_filename = NULL; } for (uint32_t epoch = 0; epoch < num_iterations; epoch++) { log_info("Doing epoch %d\n", epoch); trainer->epochs = epoch; if (!language_classifier_train_epoch(trainer, filename, cv_filename, -1, minibatch_size)) { log_error("Error in epoch\n"); logistic_regression_trainer_destroy(trainer); return NULL; } } return trainer_finalize(trainer, test_filename); } language_classifier_t *language_classifier_train_ftrl(char *filename, char *subset_filename, bool cross_validation_set, char *cv_filename, char *test_filename, uint32_t num_iterations, size_t minibatch_size) { logistic_regression_trainer_t *trainer = language_classifier_init_ftrl(filename, minibatch_size); language_classifier_ftrl_params_t params = language_classifier_parameter_sweep_ftrl(trainer, subset_filename, cv_filename, minibatch_size); log_info("Best params: lambda1=%.7f, lambda2=%.7f, alpha=%f\n", params.lambda1, params.lambda2, params.alpha); if (!logistic_regression_trainer_reset_params_ftrl(trainer, params.alpha, DEFAULT_BETA, params.lambda1, params.lambda2)) { logistic_regression_trainer_destroy(trainer); return NULL; } /* If there's not a distinct cross-validation set, e.g. when training the production model, then the cross validation file is just a subset of the training data and only used for setting the hyperparameters, so ignore it after we're done with the parameter sweep. */ if (!cross_validation_set) { cv_filename = NULL; } for (uint32_t epoch = 0; epoch < num_iterations; epoch++) { log_info("Doing epoch %d\n", epoch); trainer->epochs = epoch; if (!language_classifier_train_epoch(trainer, filename, cv_filename, -1, minibatch_size)) { log_error("Error in epoch\n"); logistic_regression_trainer_destroy(trainer); return NULL; } } return trainer_finalize(trainer, test_filename); } typedef enum { LANGUAGE_CLASSIFIER_TRAIN_POSITIONAL_ARG, LANGUAGE_CLASSIFIER_TRAIN_ARG_ITERATIONS, LANGUAGE_CLASSIFIER_TRAIN_ARG_OPTIMIZER, LANGUAGE_CLASSIFIER_TRAIN_ARG_REGULARIZATION, LANGUAGE_CLASSIFIER_TRAIN_ARG_MINIBATCH_SIZE } language_classifier_train_keyword_arg_t; #define LANGUAGE_CLASSIFIER_TRAIN_USAGE "Usage: ./language_classifier_train [train|cv] filename [cv_filename] [test_filename] [output_dir] [--iterations number --opt (sgd|ftrl) --reg (l1|l2) --minibatch-size number]\n" int main(int argc, char **argv) { if (argc < 3) { printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE); exit(EXIT_FAILURE); } int pos_args = 1; language_classifier_train_keyword_arg_t kwarg = LANGUAGE_CLASSIFIER_TRAIN_POSITIONAL_ARG; size_t num_epochs = TRAIN_EPOCHS; size_t minibatch_size = LANGUAGE_CLASSIFIER_DEFAULT_BATCH_SIZE; logistic_regression_optimizer_type optim_type = LOGISTIC_REGRESSION_OPTIMIZER_SGD; regularization_type_t reg_type = REGULARIZATION_L2; size_t position = 0; ssize_t arg_iterations; ssize_t arg_minibatch_size; char *command = NULL; char *filename = NULL; char *cv_filename = NULL; char *test_filename = NULL; bool cross_validation_set = false; char *output_dir = LIBPOSTAL_LANGUAGE_CLASSIFIER_DIR; for (int i = pos_args; i < argc; i++) { char *arg = argv[i]; if (string_equals(arg, "--iterations")) { kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_ITERATIONS; continue; } if (string_equals(arg, "--opt")) { kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_OPTIMIZER; continue; } if (string_equals(arg, "--reg")) { kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_REGULARIZATION; continue; } if (string_equals(arg, "--minibatch-size")) { kwarg = LANGUAGE_CLASSIFIER_TRAIN_ARG_MINIBATCH_SIZE; continue; } if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_ITERATIONS) { if (sscanf(arg, "%zd", &arg_iterations) != 1 || arg_iterations < 0) { log_error("Bad arg for --iterations: %s\n", arg); exit(EXIT_FAILURE); } num_epochs = (size_t)arg_iterations; } else if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_OPTIMIZER) { if (string_equals(arg, "sgd")) { optim_type = LOGISTIC_REGRESSION_OPTIMIZER_SGD; } else if (string_equals(arg, "ftrl")) { log_info("ftrl\n"); optim_type = LOGISTIC_REGRESSION_OPTIMIZER_FTRL; } else { log_error("Bad arg for --opt: %s\n", arg); exit(EXIT_FAILURE); } } else if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_REGULARIZATION) { if (string_equals(arg, "l2")) { reg_type = REGULARIZATION_L2; } else if (string_equals(arg, "l1")) { reg_type = REGULARIZATION_L1; } else { log_error("Bad arg for --reg: %s\n", arg); exit(EXIT_FAILURE); } } else if (kwarg == LANGUAGE_CLASSIFIER_TRAIN_ARG_MINIBATCH_SIZE) { if (sscanf(arg, "%zd", &arg_minibatch_size) != 1 || arg_minibatch_size < 0) { log_error("Bad arg for --batch: %s\n", arg); exit(EXIT_FAILURE); } minibatch_size = (size_t)arg_minibatch_size; } else if (position == 0) { command = arg; if (string_equals(command, "cv")) { cross_validation_set = true; } else if (!string_equals(command, "train")) { printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE); exit(EXIT_FAILURE); } position++; } else if (position == 1) { filename = arg; position++; } else if (position == 2 && cross_validation_set) { cv_filename = arg; position++; } else if (position == 2 && !cross_validation_set) { output_dir = arg; position++; } else if (position == 3 && cross_validation_set) { test_filename = arg; position++; } else if (position == 4 && cross_validation_set) { output_dir = arg; position++; } kwarg = LANGUAGE_CLASSIFIER_TRAIN_POSITIONAL_ARG; } if ((command == NULL || filename == NULL) || (cross_validation_set && (cv_filename == NULL || test_filename == NULL))) { printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE); exit(EXIT_FAILURE); } #if !defined(HAVE_SHUF) && !defined(HAVE_GSHUF) log_warn("shuf must be installed to train address parser effectively. If this is a production machine, please install shuf. No shuffling will be performed.\n"); #endif if (!address_dictionary_module_setup(NULL)) { log_error("Could not load address dictionaries\n"); exit(EXIT_FAILURE); } else if (!transliteration_module_setup(NULL)) { log_error("Could not load transliteration module\n"); exit(EXIT_FAILURE); } char_array *temp_file = char_array_new(); char_array_cat_printf(temp_file, "%s.tmp", filename); char *temp_filename = char_array_get_string(temp_file); char_array *head_command = char_array_new(); size_t subset_examples = LANGUAGE_CLASSIFIER_HYPERPARAMETER_BATCHES * LANGUAGE_CLASSIFIER_DEFAULT_BATCH_SIZE; char_array_cat_printf(head_command, "head -n %d %s > %s", subset_examples, filename, temp_filename); int ret = system(char_array_get_string(head_command)); if (ret != 0) { exit(EXIT_FAILURE); } char_array *temp_cv_file = NULL; if (!cross_validation_set) { char_array_clear(head_command); temp_cv_file = char_array_new(); char_array_cat_printf(temp_cv_file, "%s.cv.tmp", filename); char *temp_cv_filename = char_array_get_string(temp_cv_file); char_array_cat_printf(head_command, "head -n %d %s | tail -n %d > %s", subset_examples * 2, filename, subset_examples, temp_cv_filename); int ret = system(char_array_get_string(head_command)); cv_filename = temp_cv_filename; } if (ret != 0) { exit(EXIT_FAILURE); } char_array_destroy(head_command); language_classifier_t *language_classifier = NULL; if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_SGD) { language_classifier = language_classifier_train_sgd(filename, temp_filename, cross_validation_set, cv_filename, test_filename, num_epochs, minibatch_size, reg_type); } else if (optim_type == LOGISTIC_REGRESSION_OPTIMIZER_FTRL) { language_classifier = language_classifier_train_ftrl(filename, temp_filename, cross_validation_set, cv_filename, test_filename, num_epochs, minibatch_size); } remove(temp_filename); char_array_destroy(temp_file); if (temp_cv_file != NULL) { char_array_destroy(temp_cv_file); } log_info("Done with classifier\n"); char_array *path = char_array_new_size(strlen(output_dir) + PATH_SEPARATOR_LEN + strlen(LANGUAGE_CLASSIFIER_FILENAME)); char *classifier_path; if (language_classifier != NULL) { char_array_cat_joined(path, PATH_SEPARATOR, true, 2, output_dir, LANGUAGE_CLASSIFIER_FILENAME); classifier_path = char_array_get_string(path); language_classifier_save(language_classifier, classifier_path); language_classifier_destroy(language_classifier); } char_array_destroy(path); log_info("Success!\n"); address_dictionary_module_teardown(); }