import argparse import csv import os import six import sys from collections import defaultdict, Counter from itertools import izip, islice this_dir = os.path.realpath(os.path.dirname(__file__)) sys.path.append(os.path.realpath(os.path.join(os.pardir, os.pardir))) from geodata.text.tokenize import tokenize, token_types from geodata.encoding import safe_encode class FrequentPhraseExtractor(object): ''' Extract common multi-word phrases from a file/iterator using the frequent itemsets method to keep memory usage low. ''' WORD_TOKEN_TYPES = (token_types.WORD, token_types.IDEOGRAPHIC_CHAR, token_types.ABBREVIATION, token_types.HANGUL_SYLLABLE, token_types.ACRONYM) def __init__(self, min_count=5): self.min_count = min_count self.vocab = defaultdict(int) self.frequencies = defaultdict(int) self.train_words = 0 def ngrams(self, words, n=2): for t in izip(*(islice(words, i, None) for i in xrange(n))): yield t def add_tokens(self, s): for t, c in tokenize(s): if c in self.WORD_TOKEN_TYPES: self.vocab[((t.lower(), c), )] += 1 self.train_words += 1 def create_vocab(self, f): for line in f: line = line.rstrip() if not line: continue self.add_tokens(line) self.prune_vocab() def prune_vocab(self): for k in self.vocab.keys(): if self.vocab[k] < self.min_count: del self.vocab[k] def add_ngrams(self, s, n=2): sequences = [] seq = [] for t, c in tokenize(s): if c in self.WORD_TOKEN_TYPES: seq.append((t, c)) elif seq: sequences.append(seq) seq = [] if seq: sequences.append(seq) for seq in sequences: for gram in self.ngrams(seq, n=n): last_c = None prev_tokens = tuple([(t.lower(), c) for t, c in gram[:-1]]) if prev_tokens in self.vocab: t, c = gram[-1] current_token = (t.lower(), c) self.frequencies[(prev_tokens, current_token)] += 1 def add_frequent_ngrams_to_vocab(self): for k, v in six.iteritems(self.frequencies): if v < self.min_count: continue prev, current = k self.vocab[prev + (current,)] = v def find_ngram_phrases(self, f, n=2): self.frequencies = defaultdict(int) for line in f: line = line.rstrip() if not line: continue self.add_ngrams(line, n=n) self.add_frequent_ngrams_to_vocab() self.frequencies = defaultdict(int) @classmethod def from_file(cls, filename, max_phrase_len=5, min_count=5): phrases = cls() print('Doing frequent words for {}'.format(filename)) phrases.create_vocab(open(filename)) for n in xrange(2, max_phrase_len + 1): print('Doing frequent ngrams, n={} for {}'.format(n, filename)) phrases.find_ngram_phrases(open(filename), n=n) print('Done with {}'.format(filename)) return phrases def to_tsv(self, filename, mode='w', max_rows=None): f = open(filename, mode) writer = csv.writer(f, delimiter='\t') for i, (k, v) in enumerate(Counter(self.vocab).most_common()): if max_rows is not None and i == max_rows: break gram = [] for t, c in k: gram.append(t) if c != token_types.IDEOGRAPHIC_CHAR: gram.append(six.text_type(' ')) phrase = six.text_type('').join(gram) writer.writerow((safe_encode(phrase), safe_encode(len(k)), safe_encode(v))) if __name__ == '__main__': ''' Extract frequent words and multi-word phrases from an input file. The input file is expected to be a simple text file with one "sentence" per line. For OSM we typically use only street names and venue names. Phrases are considered to be sequences of n contiguous tokens given that all the tokens are of a "word" type according to the libpostal tokenizer, which implements the full Unicode TR-29 spec and will e.g. treat ideograms as individual tokens even though they are usually not separated by whitespace or punctuation. Using phrases is not only helpful for finding frequent patterns like "county road" or "roman catholic church" in English, but is also helpful e.g. in CJK languages for finding words that are longer than a single ideogram. Example usage: python extract_phrases.py en -o en.tsv --min-count=100 find . -type f -size -10M | xargs -n1 basename | xargs -n1 --max-procs=4 -I{} python extract_phrases.py {} -o {}.tsv --min-count=5 ''' parser = argparse.ArgumentParser() parser.add_argument('filename', help='Input file') parser.add_argument('-o', '--output-file', required=True, help='Output file') parser.add_argument('-p', '--phrase-len', default=5, type=int, help='Maximum phrase length') parser.add_argument('-n', '--min-count', default=5, type=int, help='Minimum count threshold') parser.add_argument('-m', '--max-rows', default=None, type=int) args = parser.parse_args() if args.phrase_len < 1: parser.error('--phrase-len must be >= 1') phrases = FrequentPhraseExtractor.from_file(args.filename, min_count=args.min_count, max_phrase_len=args.phrase_len) phrases.to_tsv(args.output_file, max_rows=args.max_rows)