#include "averaged_perceptron_trainer.h" void averaged_perceptron_trainer_destroy(averaged_perceptron_trainer_t *self) { if (self == NULL) return; const char *key; uint32_t id; if (self->features != NULL) { kh_foreach(self->features, key, id, { free((char *)key); }) kh_destroy(str_uint32, self->features); } if (self->classes != NULL) { kh_foreach(self->classes, key, id, { free((char *)key); }) kh_destroy(str_uint32, self->classes); } if (self->class_strings != NULL) { cstring_array_destroy(self->class_strings); } uint32_t feature_id; khash_t(class_weights) *weights; kh_foreach(self->weights, feature_id, weights, { kh_destroy(class_weights, weights); }) if (self->weights != NULL) { kh_destroy(feature_class_weights, self->weights); } if (self->scores != NULL) { double_array_destroy(self->scores); } free(self); } bool averaged_perceptron_trainer_get_class_id(averaged_perceptron_trainer_t *self, char *class_name, uint32_t *class_id, bool add_if_missing) { khiter_t k; if (class_name == NULL) { log_error("class_name was NULL\n"); return false; } khash_t(str_uint32) *classes = self->classes; k = kh_get(str_uint32, classes, class_name); if (k != kh_end(classes)) { *class_id = kh_value(classes, k); return true; } else if (add_if_missing) { uint32_t new_id = (uint32_t)kh_size(classes); int ret; char *key = strdup(class_name); if (key == NULL) { return false; } k = kh_put(str_uint32, classes, key, &ret); if (ret < 0) { return false; } kh_value(classes, k) = new_id; *class_id = new_id; cstring_array_add_string(self->class_strings, class_name); self->num_classes++; return true; } return false; } bool averaged_perceptron_trainer_get_feature_id(averaged_perceptron_trainer_t *self, char *feature, uint32_t *feature_id, bool add_if_missing) { khiter_t k; if (feature == NULL) { log_error("feature was NULL\n"); return false; } khash_t(str_uint32) *features = self->features; k = kh_get(str_uint32, features, feature); if (k != kh_end(features)) { *feature_id = kh_value(features, k); return true; } else if (add_if_missing) { uint32_t new_id = (uint32_t)kh_size(features); int ret; char *key = strdup(feature); if (key == NULL) { return false; } k = kh_put(str_uint32, features, key, &ret); if (ret < 0) { return false; } kh_value(features, k) = new_id; *feature_id = new_id; self->num_features++; return true; } return false; } averaged_perceptron_t *averaged_perceptron_trainer_finalize(averaged_perceptron_trainer_t *self) { if (self == NULL || self->num_classes == 0) return NULL; sparse_matrix_t *averaged_weights = sparse_matrix_new(); uint32_t class_id; class_weight_t weight; uint64_t updates = self->num_updates; khash_t(class_weights) *weights; for (uint32_t feature_id = 0; feature_id < self->num_features; feature_id++) { khiter_t k; k = kh_get(feature_class_weights, self->weights, feature_id); if (k == kh_end(self->weights)) { sparse_matrix_destroy(averaged_weights); return NULL; } weights = kh_value(self->weights, k); uint32_t class_id; kh_foreach(weights, class_id, weight, { weight.total += (updates - weight.last_updated) * weight.value; double value = weight.total / updates; sparse_matrix_append(averaged_weights, class_id, value); }) sparse_matrix_finalize_row(averaged_weights); } averaged_perceptron_t *perceptron = malloc(sizeof(averaged_perceptron_t)); perceptron->weights = averaged_weights; trie_t *features = trie_new_from_hash(self->features); if (features == NULL) { averaged_perceptron_trainer_destroy(self); return NULL; } perceptron->features = features; perceptron->num_features = self->num_features; perceptron->num_classes = self->num_classes; perceptron->scores = double_array_new_zeros(perceptron->num_classes); // Set our pointers to NULL so they don't get free'd on destroy perceptron->classes = self->class_strings; self->class_strings = NULL; averaged_perceptron_trainer_destroy(self); return perceptron; } khash_t(class_weights) *averaged_perceptron_trainer_get_class_weights(averaged_perceptron_trainer_t *self, uint32_t feature_id, bool add_if_missing) { khiter_t k; k = kh_get(feature_class_weights, self->weights, feature_id); if (k != kh_end(self->weights)) { return kh_value(self->weights, k); } else if (add_if_missing) { khash_t(class_weights) *weights = kh_init(class_weights); int ret; k = kh_put(feature_class_weights, self->weights, feature_id, &ret); if (ret < 0) { kh_destroy(class_weights, weights); return NULL; } kh_value(self->weights, k) = weights; return weights; } return NULL; } static inline bool averaged_perceptron_trainer_update_weight(khash_t(class_weights) *weights, uint64_t iter, uint32_t class_id, double value) { class_weight_t weight; size_t index; khiter_t k; k = kh_get(class_weights, weights, class_id); if (k == kh_end(weights)) { weight = NULL_WEIGHT; } else { weight = kh_value(weights, k); } weight.total += (iter - weight.last_updated) * weight.value; weight.last_updated = iter; weight.value += value; int ret; k = kh_put(class_weights, weights, class_id, &ret); if (ret < 0) return false; kh_value(weights, k) = weight; return true; } static inline bool averaged_perceptron_trainer_update_feature(averaged_perceptron_trainer_t *self, uint32_t feature_id, uint32_t guess, uint32_t truth, double value) { bool add_if_missing = true; khash_t(class_weights) *weights = averaged_perceptron_trainer_get_class_weights(self, feature_id, add_if_missing); if (weights == NULL) { return false; } uint64_t updates = self->num_updates; if (!averaged_perceptron_trainer_update_weight(weights, updates, guess, -1.0 * value) || !averaged_perceptron_trainer_update_weight(weights, updates, truth, value)) { return false; } return true; } uint32_t averaged_perceptron_trainer_predict(averaged_perceptron_trainer_t *self, cstring_array *features) { double_array *scores = self->scores; size_t num_classes = (size_t)self->num_classes; uint32_t i = 0; char *feature = NULL; bool add_if_missing = false; uint32_t feature_id; khash_t(class_weights) *weights; uint32_t class_id; class_weight_t weight; if (scores->m < num_classes) { double_array_resize(scores, num_classes); } if (scores->n < num_classes) { scores->n = num_classes; } double_array_set(scores->a, scores->n, 0.0); cstring_array_foreach(features, i, feature, { if (!averaged_perceptron_trainer_get_feature_id(self, feature, &feature_id, add_if_missing)) { continue; } weights = averaged_perceptron_trainer_get_class_weights(self, feature_id, add_if_missing); if (weights == NULL) { continue; } kh_foreach(weights, class_id, weight, { scores->a[class_id] += weight.value; }) }) int64_t max_score = double_array_argmax(scores->a, scores->n); return (uint32_t)max_score; } bool averaged_perceptron_trainer_update(averaged_perceptron_trainer_t *self, uint32_t guess, uint32_t truth, cstring_array *features) { uint32_t i = 0; char *feature = NULL; uint32_t feature_id; bool add_if_missing = true; cstring_array_foreach(features, i, feature, { if (!averaged_perceptron_trainer_get_feature_id(self, feature, &feature_id, add_if_missing)) { return false; } if (!averaged_perceptron_trainer_update_feature(self, feature_id, guess, truth, 1.0)) { return false; } }) self->num_updates++; return true; } bool averaged_perceptron_trainer_update_counts(averaged_perceptron_trainer_t *self, uint32_t guess, uint32_t truth, khash_t(str_uint32) *feature_counts) { const char *feature; uint32_t feature_id; uint32_t count; bool add_if_missing = true; kh_foreach(feature_counts, feature, count, { if (!averaged_perceptron_trainer_get_feature_id(self, (char *)feature, &feature_id, add_if_missing)) { return false; } if (!averaged_perceptron_trainer_update_feature(self, feature_id, guess, truth, (double)count)) { return false; } }) self->num_updates++; return true; } bool averaged_perceptron_trainer_train_example(averaged_perceptron_trainer_t *self, void *tagger, void *context, cstring_array *features, ap_tagger_feature_function feature_function, tokenized_string_t *tokenized, cstring_array *labels) { // Keep two tags of history in training char *prev = START; char *prev2 = START2; uint32_t prev_id = 0; uint32_t prev2_id = 0; size_t num_tokens = tokenized->tokens->n; if (cstring_array_num_strings(labels) != num_tokens) { return false; } bool add_if_missing = true; for (uint32_t i = 0; i < num_tokens; i++) { cstring_array_clear(features); char *label = cstring_array_get_string(labels, i); if (label == NULL) { log_error("label is NULL\n"); } if (i > 0) { prev = cstring_array_get_string(self->class_strings, prev_id); } if (i > 1) { prev2 = cstring_array_get_string(self->class_strings, prev2_id); } else if (i == 1) { prev2 = START; } if (!feature_function(tagger, context, tokenized, i, prev, prev2)) { log_error("Could not add address parser features\n"); return false; } uint32_t truth; if (!averaged_perceptron_trainer_get_class_id(self, label, &truth, add_if_missing)) { log_error("Get class id failed\n"); return false; } uint32_t guess = averaged_perceptron_trainer_predict(self, features); char *predicted = cstring_array_get_string(self->class_strings, guess); // Online error-driven learning, only needs to update weights when it gets a wrong answer, making training fast if (guess != truth) { self->num_errors++; if (!averaged_perceptron_trainer_update(self, guess, truth, features)) { log_error("Trainer update failed\n"); return false; } } prev2_id = prev_id; prev_id = guess; } return true; } averaged_perceptron_trainer_t *averaged_perceptron_trainer_new(void) { averaged_perceptron_trainer_t *self = malloc(sizeof(averaged_perceptron_trainer_t)); if (self == NULL) return NULL; self->num_features = 0; self->num_classes = 0; self->num_updates = 0; self->num_errors = 0; self->iterations = 0; self->features = kh_init(str_uint32); if (self->features == NULL) { goto exit_trainer_created; } self->classes = kh_init(str_uint32); if (self->classes == NULL) { goto exit_trainer_created; } self->class_strings = cstring_array_new(); if (self->class_strings == NULL) { goto exit_trainer_created; } self->weights = kh_init(feature_class_weights); if (self->weights == NULL) { goto exit_trainer_created; } self->scores = double_array_new(); return self; exit_trainer_created: averaged_perceptron_trainer_destroy(self); return NULL; }