#include "matrix.h" #include "file_utils.h" matrix_t *matrix_new(size_t m, size_t n) { matrix_t *matrix = malloc(sizeof(matrix_t)); if (matrix == NULL) { return NULL; } matrix->m = m; matrix->n = n; matrix->values = malloc(sizeof(double) * m * n); if (matrix->values == NULL) { free(matrix); return NULL; } return matrix; } bool matrix_resize(matrix_t *self, size_t m, size_t n) { if (self == NULL) return false; // If the new size is smaller, don't reallocate, just ignore the extra values if (m * n > (self->m * self->n)) { self->values = realloc(self->values, sizeof(double) * m * n); if (self->values == NULL) { return false; } } self->m = m; self->n = n; // Set all values to 0 matrix_zero(self); return true; } matrix_t *matrix_new_copy(matrix_t *self) { matrix_t *cpy = matrix_new(self->m, self->n); size_t num_values = self->m * self->n; memcpy(cpy->values, self->values, num_values); return cpy; } bool matrix_copy(matrix_t *self, matrix_t *other) { if (self->m != other->m || self->n != other->n) { return false; } size_t num_values = self->n * self->n; memcpy(other->values, self->values, num_values * sizeof(double)); return true; } inline void matrix_init_values(matrix_t *self, double *values) { size_t num_values = self->m * self->n; memcpy(self->values, values, num_values * sizeof(double)); } inline void matrix_zero(matrix_t *self) { memset(self->values, 0, self->m * self->n * sizeof(double)); } inline void matrix_set(matrix_t *self, double value) { double_array_set(self->values, self->m * self->n, value); } inline void matrix_set_row(matrix_t *self, size_t index, double *row) { size_t offset = index * self->n; double *values = self->values; size_t n = self->n; memcpy(values + offset, row, n * sizeof(double)); } inline void matrix_set_scalar(matrix_t *self, size_t row_index, size_t col_index, double value) { size_t offset = row_index * self->n + col_index; self->values[offset] = value; } inline void matrix_add_scalar(matrix_t *self, size_t row_index, size_t col_index, double value) { size_t offset = row_index * self->n + col_index; self->values[offset] += value; } inline void matrix_sub_scalar(matrix_t *self, size_t row_index, size_t col_index, double value) { size_t offset = row_index * self->n + col_index; self->values[offset] -= value; } inline void matrix_mul_scalar(matrix_t *self, size_t row_index, size_t col_index, double value) { size_t offset = row_index * self->n + col_index; self->values[offset] *= value; } inline void matrix_div_scalar(matrix_t *self, size_t row_index, size_t col_index, double value) { size_t offset = row_index * self->n + col_index; self->values[offset] /= value; } inline double matrix_get(matrix_t *self, size_t row_index, size_t col_index) { size_t index = row_index * self->n + col_index; return self->values[index]; } inline double *matrix_get_row(matrix_t *self, size_t row_index) { size_t index = row_index * self->n; return self->values + index; } inline matrix_t *matrix_new_value(size_t m, size_t n, double value) { matrix_t *matrix = matrix_new(m, n); matrix_set(matrix, value); return matrix; } inline matrix_t *matrix_new_zeros(size_t m, size_t n) { return matrix_new_value(m, n, 0.0); } inline matrix_t *matrix_new_ones(size_t m, size_t n) { return matrix_new_value(m, n, 1.0); } matrix_t *matrix_new_values(size_t m, size_t n, double *values) { matrix_t *matrix = matrix_new(m, n); memcpy(matrix->values, values, m * n * sizeof(double)); return matrix; } inline void matrix_div(matrix_t *self, double value) { double_array_div(self->values, value, self->m * self->n); } inline bool matrix_div_matrix(matrix_t *self, matrix_t *other) { if (self->m != other->m || self->n != other->n) return false; double_array_div_array(self->values, other->values, self->m * self->n); return true; } inline bool matrix_div_matrix_times_scalar(matrix_t *self, matrix_t *other, double v) { if (self->m != other->m || self->n != other->n) return false; double_array_div_array_times_scalar(self->values, other->values, v, self->m * self->n); return true; } inline void matrix_mul(matrix_t *self, double value) { double_array_mul(self->values, value, self->m * self->n); } inline bool matrix_mul_matrix(matrix_t *self, matrix_t *other) { if (self->m != other->m || self->n != other->n) return false; double_array_mul_array(self->values, other->values, self->m * self->n); return true; } inline bool matrix_mul_matrix_times_scalar(matrix_t *self, matrix_t *other, double v) { if (self->m != other->m || self->n != other->n) return false; double_array_mul_array_times_scalar(self->values, other->values, v, self->m * self->n); return true; } inline void matrix_add(matrix_t *self, double value) { double_array_add(self->values, self->m * self->n, value); } inline bool matrix_add_matrix(matrix_t *self, matrix_t *other) { if (self->m != other->m || self->n != other->n) return false; double_array_add_array(self->values, other->values, self->m * self->n); return true; } inline bool matrix_add_matrix_times_scalar(matrix_t *self, matrix_t *other, double v) { if (self->m != other->m || self->n != other->n) return false; double_array_add_array_times_scalar(self->values, other->values, v, self->m * self->n); return true; } inline void matrix_sub(matrix_t *self, double value) { double_array_sub(self->values, value, self->m * self->n); } inline bool matrix_sub_matrix(matrix_t *self, matrix_t *other) { if (self->m != other->m || self->n != other->n) return false; double_array_sub_array(self->values, other->values, self->m * self->n); return true; } inline bool matrix_sub_matrix_times_scalar(matrix_t *self, matrix_t *other, double v) { if (self->m != other->m || self->n != other->n) return false; double_array_sub_array_times_scalar(self->values, other->values, v, self->m * self->n); return true; } inline void matrix_log(matrix_t *self) { double_array_log(self->values, self->m * self->n); } inline void matrix_exp(matrix_t *self) { double_array_exp(self->values, self->m * self->n); } void matrix_dot_vector(matrix_t *self, double *vec, double *result) { double *values = self->values; size_t n = self->n; for (int i = 0; i < self->m; i++) { for (int j = 0; j < n; j++) { result[i] += values[n * i + j] * vec[j]; } } } inline bool matrix_dot_matrix(matrix_t *m1, matrix_t *m2, matrix_t *result) { if (m1->n != m2->m || m1->m != result->m || m2->n != result->n) { return false; } size_t m1_rows = m1->m; size_t m1_cols = m1->n; size_t m2_rows = m2->m; size_t m2_cols = m2->n; double *m1_values = m1->values; double *m2_values = m2->values; double *result_values = result->values; for (int i = 0; i < m1_rows; i++) { for (int j = 0; j < m2_cols; j++) { size_t result_index = m2_cols * i + j; result_values[result_index] = 0.0; for (int k = 0; k < m2_rows; k++) { result_values[result_index] += m1_values[m1_cols * i + k] * m2_values[m2_cols * k + j]; } } } return true; } matrix_t *matrix_read(FILE *f) { matrix_t *mat = malloc(sizeof(matrix_t)); if (mat == NULL) return NULL; mat->values = NULL; uint64_t m = 0; uint64_t n = 0; if (!file_read_uint64(f, &m) || !file_read_uint64(f, &n)) { goto exit_matrix_allocated; } mat->m = (size_t)m; mat->n = (size_t)n; size_t len_data = mat->m * mat->n; double *data = malloc(len_data * sizeof(double)); if (data == NULL) { printf("data alloc\n"); goto exit_matrix_allocated; } if (!file_read_double_array(f, data, len_data)) { free(data); goto exit_matrix_allocated; } mat->values = data; return mat; exit_matrix_allocated: matrix_destroy(mat); return NULL; } bool matrix_write(matrix_t *self, FILE *f) { if (self == NULL || self->values == NULL) { return false; } if (!file_write_uint64(f, (uint64_t)self->m) || !file_write_uint64(f, (uint64_t)self->n)) { return false; } uint64_t len_data = (uint64_t)self->m * (uint64_t)self->n; for (uint64_t i = 0; i < len_data; i++) { if (!file_write_double(f, self->values[i])) { return false; } } return true; } void matrix_destroy(matrix_t *self) { if (self == NULL) return; if (self->values != NULL) { free(self->values); } free(self); }