/* Stochastic gradient descent implementation Based on Leon Bottou's Stochastic Gradient Descent Tricks: http://leon.bottou.org/publications/pdf/tricks-2012.pdf Learning rate calculated as: gamma_t = gamma_0(1 + gamma_0 * lambda * t)^-1 */ #ifndef STOCHASTIC_GRADIENT_DESCENT_H #define STOCHASTIC_GRADIENT_DESCENT_H #include #include #include "matrix.h" bool stochastic_gradient_descent(matrix_t *theta, matrix_t *gradient, double gamma); bool stochastic_gradient_descent_sparse(matrix_t *theta, matrix_t *gradient, uint32_array *update_indices, double gamma); bool stochastic_gradient_descent_sparse_regularize_weights(matrix_t *theta, uint32_array *update_indices, uint32_array *last_updated, uint32_t t, double lambda); bool stochastic_gradient_descent_sparse_finalize_weights(matrix_t *theta, uint32_array *last_updated, uint32_t t, double lambda); bool stochastic_gradient_descent_scheduled(matrix_t *theta, matrix_t *gradient, double lambda, uint32_t t, double gamma_0); #endif