#include "string_similarity.h" #include "string_utils.h" size_t damerau_levenshtein_distance_unicode(uint32_array *u1_array, uint32_array *u2_array, size_t replace_cost) { size_t len1 = u1_array->n; size_t len2 = u2_array->n; uint32_t *u1 = u1_array->a; uint32_t *u2 = u2_array->a; size_t num_bytes = (len1 + 1) * sizeof(size_t); size_t *column = malloc(num_bytes); for (size_t y = 1; y <= len1; y++) { column[y] = y; } size_t transpose_diag = 0; size_t last_diag = 0; for (size_t x = 1; x <= len2; x++) { column[0] = x; for (size_t y = 1, last_diag = x - 1; y <= len1; y++) { size_t old_diag = column[y]; size_t cost = (u1[y - 1] == u2[x - 1] ? 0 : 1); size_t v1 = column[y] + 1; size_t v2 = column[y - 1] + 1; size_t v3 = last_diag + cost; size_t min = v1; if (v2 < min) min = v2; if (v3 < min) min = v3; if (x > 1 && y > 1 && u1[y - 1] == u2[x - 2] && u1[y - 2] == u2[x - 1]) { size_t v4 = transpose_diag + cost; if (v4 < min) min = v4; } column[y] = min; last_diag = old_diag; } transpose_diag = last_diag; } size_t dist = column[len1]; free(column); return dist; } ssize_t damerau_levenshtein_distance_replace_cost(const char *s1, const char *s2, size_t replace_cost) { if (s1 == NULL || s2 == NULL) return -1; uint32_array *u1 = unicode_codepoints(s1); if (u1 == NULL) return -1.0; uint32_array *u2 = unicode_codepoints(s2); if (u2 == NULL) { uint32_array_destroy(u1); return -1.0; } ssize_t lev = damerau_levenshtein_distance_unicode(u1, u2, replace_cost); uint32_array_destroy(u1); uint32_array_destroy(u2); return lev; } ssize_t damerau_levenshtein_distance(const char *s1, const char *s2) { return damerau_levenshtein_distance_replace_cost(s1, s2, 0); } double jaro_distance_unicode(uint32_array *u1_array, uint32_array *u2_array) { if (u1_array == NULL || u2_array == NULL) return -1.0; size_t len1 = u1_array->n; size_t len2 = u2_array->n; // If both strings are zero-length, return 1. If only one is, return 0 if (len1 == 0) return len2 == 0 ? 1.0 : 0.0; size_t max_len = len1 > len2 ? len1 : len2; size_t match_distance = (max_len / 2) - 1; uint8_t *u1_matches = calloc(len2, sizeof(uint8_t)); uint8_t *u2_matches = calloc(len1, sizeof(uint8_t)); uint32_t *u1 = u1_array->a; uint32_t *u2 = u2_array->a; double matches = 0.0; double transpositions = 0.0; size_t i = 0; // count matches for (size_t i = 0; i < len1; i++) { // start and end take into account the match distance size_t start = i > match_distance ? i - match_distance : 0; size_t end = (i + match_distance + 1) < len2 ? i + match_distance + 1 : len2; for (size_t k = start; k < end; k++) { // already a match at k if (u2_matches[k]) continue; // codepoints not equal if (u1[i] != u2[k]) continue; // otherwise record a match on both sides and increment counter u1_matches[i] = true; u2_matches[k] = true; matches++; break; } } if (matches == 0) { free(u1_matches); free(u2_matches); return 0.0; } // count transpositions size_t k = 0; for (size_t i = 0; i < len1; i++) { // wait for a match in u1 if (!u1_matches[i]) continue; // get the next matched character in u2 while (!u2_matches[k]) k++; // it's a transposition if (u1[i] != u2[k]) transpositions++; k++; } // transpositions double-count transposed characters, so divide by 2 transpositions /= 2.0; free(u1_matches); free(u2_matches); // Jaro distance return ((matches / len1) + (matches / len2) + ((matches - transpositions) / matches)) / 3.0; } double jaro_distance(const char *s1, const char *s2) { if (s1 == NULL || s2 == NULL) { return -1.0; } uint32_array *u1 = unicode_codepoints(s1); if (u1 == NULL) return -1.0; uint32_array *u2 = unicode_codepoints(s2); if (u2 == NULL) { uint32_array_destroy(u1); return -1.0; } double jaro = jaro_distance_unicode(u1, u2); uint32_array_destroy(u1); uint32_array_destroy(u2); return jaro; } double jaro_winkler_distance_prefix_threshold(const char *s1, const char *s2, double prefix_scale, double bonus_threshold) { if (s1 == NULL || s2 == NULL) { return -1.0; } uint32_array *u1_array = unicode_codepoints(s1); if (u1_array == NULL) return -1.0; uint32_array *u2_array = unicode_codepoints(s2); if (u2_array == NULL) { uint32_array_destroy(u1_array); return -1.0; } double jaro = jaro_distance_unicode(u1_array, u2_array); double j; size_t len1 = u1_array->n; size_t len2 = u2_array->n; uint32_t *u1 = u1_array->a; uint32_t *u2 = u2_array->a; size_t m = len1 < len2 ? len1 : len2; size_t i = 0; for (; i < m; i++) { if (u1[i] != u2[i]) break; } double jaro_winkler = jaro; if (jaro >= bonus_threshold) { jaro_winkler += (1.0 - jaro_winkler) * i * prefix_scale; } uint32_array_destroy(u1_array); uint32_array_destroy(u2_array); return jaro_winkler > 1.0 ? 1.0 : jaro_winkler; } inline double jaro_winkler_distance(const char *s1, const char *s2) { return jaro_winkler_distance_prefix_threshold(s1, s2, DEFAULT_JARO_WINKLER_PREFIX_SCALE, DEFAULT_JARO_WINKLER_BONUS_THRESHOLD); }