import bisect import random import sys FLOAT_EPSILON = 1e-09 def weighted_choice(values, cdf): """Pick one of n values given a discrete cumulative distribution""" assert values and cdf, 'values and probabilities cannot be empty/None' assert len(values) == len(cdf), 'len(values) != len(probs)' assert all(p >= 0.0 and p <= (1.0 + FLOAT_EPSILON) for p in cdf), 'Probabilities not valid: {}'.format(cdf) x = random.random() i = bisect.bisect(cdf, x) return values[i] def isclose(a, b, rel_tol=FLOAT_EPSILON, abs_tol=0.0): return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def check_probability_distribution(probs): cumulative = 0.0 for p in probs: assert p >= 0.0, 'Probabilities cannot be negative' assert p <= 1.0, 'Probabilities cannot be > 1.0' cumulative += p assert isclose(cumulative, 1.0), 'Probabilities must sum to 1: probs={}, cumulative={}'.format(probs, cumulative) def cdf(probs): total = 0.0 cumulative = [0.0] * len(probs) for i, p in enumerate(probs): total += p cumulative[i] = total return cumulative def zipfian_distribution(n, b=1.0): """Distribution where the ith item's frequency is proportional to its rank""" frequencies = [1. / (i ** b) for i in xrange(1, n + 1)] total = sum(frequencies) return [f / total for f in frequencies]