[language_classifier] Language classifier training using L2-regularized logistic regression and stochastic gradient descent
This commit is contained in:
341
src/language_classifier_train.c
Normal file
341
src/language_classifier_train.c
Normal file
@@ -0,0 +1,341 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include "log/log.h"
|
||||
#include "address_dictionary.h"
|
||||
#include "language_classifier.h"
|
||||
#include "language_classifier_io.h"
|
||||
#include "logistic_regression.h"
|
||||
#include "logistic_regression_trainer.h"
|
||||
#include "shuffle.h"
|
||||
|
||||
#define LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD 1.0
|
||||
#define LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD 1
|
||||
|
||||
#define LOG_BATCH_INTERVAL 10
|
||||
#define COMPUTE_COST_INTERVAL 100
|
||||
|
||||
#define TRAIN_EPOCHS 10
|
||||
|
||||
logistic_regression_trainer_t *language_classifier_init_thresholds(char *filename, bool with_country, double feature_count_threshold, uint32_t label_count_threshold) {
|
||||
if (filename == NULL) {
|
||||
log_error("Filename was NULL\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename);
|
||||
|
||||
language_classifier_minibatch_t *minibatch;
|
||||
khash_t(str_double) *feature_counts = kh_init(str_double);
|
||||
khash_t(str_uint32) *label_counts = kh_init(str_uint32);
|
||||
|
||||
size_t num_batches = 0;
|
||||
|
||||
// Count features and labels
|
||||
while ((minibatch = language_classifier_data_set_get_minibatch(data_set, with_country)) != NULL) {
|
||||
if (!count_features_minibatch(feature_counts, minibatch->features, true)){
|
||||
log_error("Counting minibatch features failed\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
if (!count_labels_minibatch(label_counts, minibatch->labels)) {
|
||||
log_error("Counting minibatch labeles failed\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
if (num_batches % LOG_BATCH_INTERVAL == 0) {
|
||||
log_info("Counted %zu batches\n", num_batches);
|
||||
}
|
||||
|
||||
num_batches++;
|
||||
|
||||
language_classifier_minibatch_destroy(minibatch);
|
||||
}
|
||||
log_info("Done counting, finalizing\n");
|
||||
|
||||
language_classifier_data_set_destroy(data_set);
|
||||
|
||||
// Discard rare features using a count threshold (can be 1) and convert them to trie
|
||||
trie_t *feature_ids = select_features_threshold(feature_counts, feature_count_threshold);
|
||||
if (feature_ids == NULL) {
|
||||
log_error("Error creating features trie\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Need to free the keys here as trie uses its own memory
|
||||
const char *key;
|
||||
kh_foreach_key(feature_counts, key, {
|
||||
free((char *)key);
|
||||
})
|
||||
kh_destroy(str_double, feature_counts);
|
||||
|
||||
khash_t(str_uint32) *label_ids = select_labels_threshold(label_counts, label_count_threshold);
|
||||
if (label_ids == NULL) {
|
||||
log_error("Error creating labels\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Don't free the label strings as the pointers are reused in select_labels_threshold
|
||||
kh_destroy(str_uint32, label_counts);
|
||||
|
||||
return logistic_regression_trainer_init(feature_ids, label_ids);
|
||||
}
|
||||
|
||||
logistic_regression_trainer_t *language_classifier_init(char *filename, bool with_country) {
|
||||
return language_classifier_init_thresholds(filename, with_country, LANGUAGE_CLASSIFIER_FEATURE_COUNT_THRESHOLD, LANGUAGE_CLASSIFIER_LABEL_COUNT_THRESHOLD);
|
||||
}
|
||||
|
||||
double compute_cv_accuracy(logistic_regression_trainer_t *trainer, char *filename, bool with_country) {
|
||||
language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename);
|
||||
|
||||
language_classifier_minibatch_t *minibatch;
|
||||
|
||||
uint32_t correct = 0;
|
||||
uint32_t total = 0;
|
||||
|
||||
matrix_t *p_y = matrix_new_zeros(LANGUAGE_CLASSIFIER_DEFAULT_BATCH_SIZE, trainer->num_labels);
|
||||
|
||||
while ((minibatch = language_classifier_data_set_get_minibatch(data_set, with_country)) != NULL) {
|
||||
sparse_matrix_t *x = feature_matrix(trainer->feature_ids, minibatch->features);
|
||||
uint32_array *y = label_vector(trainer->label_ids, minibatch->labels);
|
||||
|
||||
matrix_resize(p_y, x->m, trainer->num_labels);
|
||||
|
||||
if (!logistic_regression_model_expectation(trainer->weights, x, p_y)) {
|
||||
log_error("Predict cv batch failed\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
double *row;
|
||||
for (size_t i = 0; i < p_y->m; i++) {
|
||||
row = matrix_get_row(p_y, i);
|
||||
|
||||
int64_t predicted = double_array_argmax(row, p_y->n);
|
||||
if (predicted < 0) {
|
||||
log_error("Error in argmax\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
uint32_t y_i = y->a[i];
|
||||
if (y_i == (uint32_t)predicted) {
|
||||
correct++;
|
||||
}
|
||||
|
||||
total++;
|
||||
}
|
||||
|
||||
sparse_matrix_destroy(x);
|
||||
uint32_array_destroy(y);
|
||||
|
||||
language_classifier_minibatch_destroy(minibatch);
|
||||
}
|
||||
|
||||
language_classifier_data_set_destroy(data_set);
|
||||
matrix_destroy(p_y);
|
||||
|
||||
double accuracy = (double)correct / total;
|
||||
return accuracy;
|
||||
}
|
||||
|
||||
bool language_classifier_train_epoch(logistic_regression_trainer_t *trainer, char *filename, char *cv_filename, bool with_country) {
|
||||
if (filename == NULL) {
|
||||
log_error("Filename was NULL\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
language_classifier_data_set_t *data_set = language_classifier_data_set_init(filename);
|
||||
|
||||
language_classifier_minibatch_t *minibatch;
|
||||
|
||||
size_t num_batches = 0;
|
||||
double batch_cost = 0.0;
|
||||
double total_cost = 0.0;
|
||||
double last_cost = 0.0;
|
||||
|
||||
double train_cost = 0.0;
|
||||
double cv_accuracy = 0.0;
|
||||
|
||||
while ((minibatch = language_classifier_data_set_get_minibatch(data_set, with_country)) != NULL) {
|
||||
bool compute_cost = num_batches % COMPUTE_COST_INTERVAL == 0 && num_batches > 0;
|
||||
|
||||
if (num_batches % LOG_BATCH_INTERVAL == 0 && num_batches > 0) {
|
||||
log_info("Epoch %u, trained %zu batches\n", trainer->epochs, num_batches);
|
||||
}
|
||||
|
||||
if (compute_cost) {
|
||||
train_cost = logistic_regression_trainer_batch_cost(trainer, minibatch->features, minibatch->labels);
|
||||
log_info("cost = %f\n", train_cost);
|
||||
}
|
||||
|
||||
if (!logistic_regression_trainer_train_batch(trainer, minibatch->features, minibatch->labels)){
|
||||
log_error("Train batch failed\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
if (compute_cost && cv_filename != NULL) {
|
||||
cv_accuracy = compute_cv_accuracy(trainer, cv_filename, with_country);
|
||||
log_info("cv accuracy=%f\n", cv_accuracy);
|
||||
}
|
||||
|
||||
num_batches++;
|
||||
|
||||
language_classifier_minibatch_destroy(minibatch);
|
||||
}
|
||||
|
||||
language_classifier_data_set_destroy(data_set);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
language_classifier_t *language_classifier_train(char *filename, char *cv_filename, uint32_t num_iterations, bool with_country) {
|
||||
logistic_regression_trainer_t *trainer = language_classifier_init(filename, with_country);
|
||||
|
||||
for (uint32_t epoch = 0; epoch < num_iterations; epoch++) {
|
||||
log_info("Doing epoch %d\n", epoch);
|
||||
|
||||
trainer->epochs = epoch;
|
||||
|
||||
#if defined(HAVE_SHUF)
|
||||
log_info("Shuffling\n");
|
||||
|
||||
if (!shuffle_file(filename)) {
|
||||
log_error("Error in shuffle\n");
|
||||
logistic_regression_trainer_destroy(trainer);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
log_info("Shuffle complete\n");
|
||||
#endif
|
||||
|
||||
if (!language_classifier_train_epoch(trainer, filename, cv_filename, with_country)) {
|
||||
log_error("Error in epoch\n");
|
||||
logistic_regression_trainer_destroy(trainer);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
log_info("Done training\n");
|
||||
|
||||
if (!logistic_regression_trainer_finalize(trainer)) {
|
||||
log_error("Error in finalization\n");
|
||||
logistic_regression_trainer_destroy(trainer);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
language_classifier_t *classifier = language_classifier_new();
|
||||
|
||||
// Reassign weights and features to the classifier model
|
||||
classifier->weights = trainer->weights;
|
||||
trainer->weights = NULL;
|
||||
|
||||
classifier->num_features = trainer->num_features;
|
||||
classifier->features = trainer->feature_ids;
|
||||
trainer->feature_ids = NULL;
|
||||
|
||||
size_t num_labels = trainer->num_labels;
|
||||
classifier->num_labels = num_labels;
|
||||
|
||||
char **strings = malloc(sizeof(char *) * num_labels);
|
||||
|
||||
const char *label;
|
||||
uint32_t label_id;
|
||||
kh_foreach(trainer->label_ids, label, label_id, {
|
||||
if (label_id >= num_labels) {
|
||||
log_error("label_id %d >= num_labels %zu\n", label_id, num_labels);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
strings[label_id] = (char *)label;
|
||||
})
|
||||
|
||||
classifier->labels = cstring_array_from_strings(strings, num_labels);
|
||||
|
||||
for (size_t i = 0; i < num_labels; i++) {
|
||||
free(strings[i]);
|
||||
}
|
||||
|
||||
free(strings);
|
||||
|
||||
logistic_regression_trainer_destroy(trainer);
|
||||
return classifier;
|
||||
}
|
||||
|
||||
|
||||
#define LANGUAGE_CLASSIFIER_TRAIN_USAGE "Usage: ./address_parser_train [train|cv] filename [cv_filename] [output_dir]\n"
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
if (argc < 3) {
|
||||
printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
char *command = argv[1];
|
||||
bool cross_validate = false;
|
||||
|
||||
if (string_equals(command, "cv")) {
|
||||
cross_validate = true;
|
||||
} else if (!string_equals(command, "train")) {
|
||||
printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
char *filename = argv[2];
|
||||
char *cv_filename = NULL;
|
||||
|
||||
if (cross_validate && argc < 4) {
|
||||
printf(LANGUAGE_CLASSIFIER_TRAIN_USAGE);
|
||||
exit(EXIT_FAILURE);
|
||||
} else if (cross_validate) {
|
||||
cv_filename = argv[3];
|
||||
}
|
||||
|
||||
char *output_dir = LIBPOSTAL_LANGUAGE_CLASSIFIER_DIR;
|
||||
int output_dir_arg = cross_validate ? 4 : 3;
|
||||
|
||||
if (argc > output_dir_arg) {
|
||||
output_dir = argv[output_dir_arg];
|
||||
}
|
||||
|
||||
#if !defined(HAVE_SHUF)
|
||||
log_warn("shuf must be installed to train address parser effectively. If this is a production machine, please install shuf. No shuffling will be performed.\n");
|
||||
#endif
|
||||
|
||||
if (!address_dictionary_module_setup(NULL)) {
|
||||
log_error("Could not load address dictionaries\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
language_classifier_t *language_classifier = language_classifier_train(filename, cv_filename, TRAIN_EPOCHS, false);
|
||||
|
||||
log_info("Done with classifier\n");
|
||||
char_array *path = char_array_new_size(strlen(output_dir) + PATH_SEPARATOR_LEN + strlen(LANGUAGE_CLASSIFIER_COUNTRY_FILENAME));
|
||||
|
||||
char *classifier_path;
|
||||
if (language_classifier != NULL) {
|
||||
char_array_cat_joined(path, PATH_SEPARATOR, true, 2, output_dir, LANGUAGE_CLASSIFIER_FILENAME);
|
||||
classifier_path = char_array_get_string(path);
|
||||
|
||||
language_classifier_save(language_classifier, classifier_path);
|
||||
language_classifier_destroy(language_classifier);
|
||||
}
|
||||
|
||||
language_classifier_t *language_classifier_country = language_classifier_train(filename, cv_filename, TRAIN_EPOCHS, true);
|
||||
|
||||
if (language_classifier_country != NULL) {
|
||||
char_array_clear(path);
|
||||
char_array_cat_joined(path, PATH_SEPARATOR, true, 2, output_dir, LANGUAGE_CLASSIFIER_COUNTRY_FILENAME);
|
||||
|
||||
classifier_path = char_array_get_string(path);
|
||||
|
||||
language_classifier_save(language_classifier_country, classifier_path);
|
||||
language_classifier_destroy(language_classifier_country);
|
||||
}
|
||||
|
||||
char_array_destroy(path);
|
||||
|
||||
log_info("Success!\n");
|
||||
|
||||
address_dictionary_module_teardown();
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user