[addresses] adding pymorphy2 for converting Russian and Ukrainian place names (sticking with state and staet_district for the moment) to the locative case as mentioned in #125

This commit is contained in:
Al
2016-12-28 04:48:32 -05:00
parent e91907a21b
commit 6f009fb8a6
3 changed files with 46 additions and 0 deletions

View File

@@ -121,6 +121,13 @@ state:
full_name_probability: 0.2 full_name_probability: 0.2
abbreviated_probability: 0.8 abbreviated_probability: 0.8
# Currently for Russian and Ukrainian, convert some names to the genitive/locative case
slavic_names:
state:
locative_probability: 0.4
state_district:
locative_probability: 0.4
country: country:
# If no country is specified, pull the country name from CLDR (authoratative country names translated into different languages) # If no country is specified, pull the country name from CLDR (authoratative country names translated into different languages)
cldr_country_probability: 0.5 cldr_country_probability: 0.5

View File

@@ -8,6 +8,11 @@ import re
import six import six
import yaml import yaml
# Russian/Ukrainian parsing and inflection
import pymorphy2
import pymorphy2_dicts_ru
import pymorphy2_dicts_uk
from collections import defaultdict, OrderedDict from collections import defaultdict, OrderedDict
from itertools import combinations from itertools import combinations
@@ -161,6 +166,11 @@ class AddressComponents(object):
'zh_py': 'zh_pinyin' 'zh_py': 'zh_pinyin'
} }
slavic_morphology_analyzers = {
'ru': pymorphy2.MorphAnalyzer(pymorphy2_dicts_ru.get_path(), lang='ru'),
'uk': pymorphy2.MorphAnalyzer(pymorphy2_dicts_uk.get_path(), lang='uk'),
}
sub_building_component_class_map = { sub_building_component_class_map = {
AddressFormatter.ENTRANCE: Entrance, AddressFormatter.ENTRANCE: Entrance,
AddressFormatter.STAIRCASE: Staircase, AddressFormatter.STAIRCASE: Staircase,
@@ -848,6 +858,29 @@ class AddressComponents(object):
else: else:
return self.japanese_node_admin_level_map.get(val.get('place'), 1000) return self.japanese_node_admin_level_map.get(val.get('place'), 1000)
def locative_name(self, name, language):
morph = self.slavic_morphology_analyzers.get(language)
if not morph:
return None
norm = []
words = safe_decode(name).split()
n = len(words)
for i, word in enumerate(words):
parsed = morph.parse(word)[0]
word_class = {'gent'} if i < n - 1 else {'loct'}
inflected = parsed.inflect(word_class)
if inflected and inflected.word:
norm.append(inflected.word)
else:
norm.append(word)
return six.u(' ').join(norm)
def add_locatives(self, address_components, language):
for component in address_components:
locative_probability = float(nested_get(self.config, ('slavic_names', component, 'locative_probability')))
if locative_probability is not None and random.random() < locative_probability:
address_components[component] = self.locative_name(address_components[component], language)
def abbreviated_state(self, state, country, language): def abbreviated_state(self, state, country, language):
abbreviate_state_prob = float(nested_get(self.config, ('state', 'abbreviated_probability'))) abbreviate_state_prob = float(nested_get(self.config, ('state', 'abbreviated_probability')))
@@ -1680,6 +1713,9 @@ class AddressComponents(object):
self.drop_invalid_components(address_components, country) self.drop_invalid_components(address_components, country)
if language in self.slavic_morphology_analyzers and AddressFormatter.CITY in address_components:
self.add_locatives(address_components, language)
if language_suffix and not non_local_language and not language_altered: if language_suffix and not non_local_language and not language_altered:
language = language_suffix.lstrip(':').lower() language = language_suffix.lstrip(':').lower()
if '_' in language: if '_' in language:

View File

@@ -22,6 +22,9 @@ lru-dict==1.1.3
marisa-trie==0.7.2 marisa-trie==0.7.2
numpy==1.10.4 numpy==1.10.4
pycountry==1.20 pycountry==1.20
git+https://github.com/kmike/pymorphy2
pymorphy2-dicts-ru==2.4.394633.4298366
pymorphy2-dicts-uk==2.4.1.1.1460299261
pyproj==1.9.5.1 pyproj==1.9.5.1
pystache==0.5.4 pystache==0.5.4
python-Levenshtein==0.12.0 python-Levenshtein==0.12.0