Files
libpostal-addrss/scripts/geodata/chains/query.py
2025-09-06 22:03:29 -04:00

101 lines
3.7 KiB
Python

import random
import six
from collections import namedtuple
from geodata.addresses.config import address_config
from geodata.address_expansions.gazetteers import chains_gazetteer
from geodata.categories.config import category_config
from geodata.categories.preposition import CategoryPreposition
from geodata.math.sampling import weighted_choice, cdf
from geodata.text.normalize import normalized_tokens
from geodata.text.tokenize import tokenize, token_types
from geodata.encoding import safe_decode
ChainQuery = namedtuple('ChainQuery', 'name, prep, add_place_name, add_address')
NULL_CHAIN_QUERY = ChainQuery(None, None, False, False)
class Chain(object):
@classmethod
def tokenize_name(cls, name):
if not name:
return []
tokens = normalized_tokens(name)
return tokens
@classmethod
def possible_chain(cls, name):
'''
Determines if a venue name contains the name of a known chain store.
Returns a tuple of:
(True/False, known chain phrases, other tokens)
Handles cases like "Hard Rock Cafe Times Square" and allows for downstream
decision making (i.e. if the tokens have a low IDF in the local area we might
want to consider it a chain).
'''
tokens = cls.tokenize_name(name)
if not tokens:
return False, [], []
matches = chains_gazetteer.filter(tokens)
other_tokens = []
phrases = []
for t, c, l, d in matches:
if c == token_types.PHRASE:
phrases.append((t, c, l, d))
else:
other_tokens.append((t, c))
return len(phrases) > 0, phrases, other_tokens if len(phrases) > 0 else []
@classmethod
def extract(cls, name):
'''
Determines if an entire venue name matches a known chain store.
Note: to avoid false positives, only return True if all of the tokens
in the venue's name are part of a single chain store phrase. This will
miss a few things like "Hard Rock Cafe Times Square" and the like.
It will however handle compound chain stores like Subway/Taco Bell
'''
possible, phrases, other_tokens = cls.possible_chain(name)
is_chain = possible and not any((c in token_types.WORD_TOKEN_TYPES for t, c in other_tokens))
return is_chain, phrases if is_chain else []
@classmethod
def alternate_form(cls, language, dictionary, canonical):
choices = address_config.sample_phrases.get((language, dictionary), {}).get(canonical)
if not choices:
return canonical
return random.choice(choices)
@classmethod
def phrase(cls, chain, language, country=None):
if not chain:
return NULL_CHAIN_QUERY
chain_phrase = safe_decode(chain)
prep_phrase_type = CategoryPreposition.random(language, country=country)
if prep_phrase_type in (None, CategoryPreposition.NULL):
return ChainQuery(chain_phrase, prep=None, add_place_name=True, add_address=True)
values, probs = address_config.alternative_probabilities('categories.{}'.format(prep_phrase_type), language, country=country)
if not values:
return ChainQuery(chain_phrase, prep=None, add_place_name=True, add_address=True)
prep_phrase, prep_phrase_props = weighted_choice(values, probs)
prep_phrase = safe_decode(prep_phrase)
add_address = prep_phrase_type not in (CategoryPreposition.NEARBY, CategoryPreposition.NEAR_ME, CategoryPreposition.IN)
add_place_name = prep_phrase_type not in (CategoryPreposition.NEARBY, CategoryPreposition.NEAR_ME)
return ChainQuery(chain_phrase, prep=prep_phrase, add_place_name=add_place_name, add_address=add_address)